Advertisement

Inhibition of Cytochrome P450 Enzymes by Nitric Oxide

  • J. Stadler
  • W. A. Schmalix
  • J. Doehmer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 387)

Abstract

Inflammatory Stimulation of the liver causes significant alterations in liver cell metabolism. Recent experimental studies indicate that induction of nitric oxide (NO) biosynthesis may play a major role in the regulation of inflammatory processes and subsequent metabolic changes (23). Under cell culture conditions bacterial toxins and proinflammatory cytokines, such as TNFα, IL-1 and IFNγ, were identified as inducers of NO biosynthesis in parenchymal as well as non-parenchymal liver cells (6). Hepatic NO biosynthesis was also demonstrated in several animal models for local or systemic inflammation including injection of Corynebacterium parvum or lipopolysaccharides (4, 10). Finally, human hepatocytes were shown to express inducible nitric oxide synthase (iNOS) activity, which set the basis for cloning and heterologous expression of the human iNOS gene (24, 11). These findings support the idea that NO biosynthesis of the liver is a clinically relevant phenomenon in diseases characterized by local or systemic inflammatory reactions.

Keywords

Nitric Oxide Nitric Oxide Electron Paramagnetic Resonance Electron Paramagnetic Resonance Signal Human Hepatocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Razzak, Z., P. Loyer, A. Fautrel, J.-C. Gautier, L. Corcos, B. Turlin, P. Beaune, and A. Guillouzo. Cytokines down-regulate expression of major cytochrome P450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol. 44: 707–715, 1993.PubMedGoogle Scholar
  2. 2.
    Beckman, J. S., T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA. 87: 1620–1624, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Billiar, T. R., R. D. Curran, B. G. Harbrecht, J. Stadler, D. L. Williams, J. B. Ochoa, M. Di Silvio, R. L. Simmons, and S. A. Murray. Association between synthesis and release of cGMP and nitric oxide biosynthesis by hepatocytes. Am J Physiol 262: C1077–1082, 1992.PubMedGoogle Scholar
  4. 4.
    Billiar, T. R., R. D. Curran, D. J. Stuehr, J. Stadler, R. L. Simmons, and S. A. Murray. Inducible cytosolic enzyme activity for the production of nitrogen oxides from L-arginine in hepatocytes. Biochem Biophys Res Commun. 168: 1034–1040, 1990.PubMedCrossRefGoogle Scholar
  5. 5.
    Billiar, T. R., R. D. Curran, D. J. Stuehr, M. A. West, B. G. Bentz, and R. L. Simmons. An L-arginine-dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med. 169: 1467–1472, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    Curran, R. D., T. R. Billiar, D. J. Stuehr, J. B. Ochoa, B. G. Harbrecht, S. G. Flint, and R. L. Simmons. Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg. 212: 462–469, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Curran, R. D., F. K. Ferrari, P. H. Kispert, J. Stadler, D. J. Stuehr, R. L. Simmons, and T. R. Billiar. Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis. FASEB J. 5: 2085–2092, 1991.PubMedGoogle Scholar
  8. 8.
    Dimmeler, S., F. Lottspeich, and B. Brune. Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 267: 16771–16774, 1992.PubMedGoogle Scholar
  9. 9.
    Doehmer, J., C. Wölfel, S. Dogra, C. Doehmer, A. Seidel, K. L. Platt, F. Oesch, and H. R. Glatt. Applications of stable V79-derived cell lines expressing rat cytochromes P4501A1, 1A2, and 2B1. Xenobiotica. 22: 1093–1099, 1992.PubMedCrossRefGoogle Scholar
  10. 10.
    Geller, D. A., P. D. Freeswick, D. Nguyen, A. K. Nüssler, M. Di Silvio, R. A. Shapiro, S. C. Wang, R. L. Simmons, and T. R. Billiar. Differential induction of nitric oxide synthase in hepatocytes during endotoxemia and the acute-phase response. Arch Surg. 129: 165–171, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Geller, D. A., C. J. Lowenstein, R. A. Shapiro, A. K. Nüssler, M. Di Silvio, S. C. Wang, D. K. Nakayama, R. L. Simmons, S. H. Snyder, and T. R. Billiar. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA. 90: 3491–3495, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Hegesh, E. and J. Shiloah. Blood nitrates and infantile methemoglobinemia. Clin Chim Acta. 125: 107–115, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Ignarro, L. J., J. B. Adams, P. M. Horwitz, and K. S. Wood. Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J Biol Chem. 261: 4997–5002, 1986.PubMedGoogle Scholar
  14. 14.
    Ignarro, L. J., G. M. Buga, K. S. Wood, R. E. Byrns, and G. Chaudhuri. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 84: 9265–9269, 1987.PubMedCrossRefGoogle Scholar
  15. 15.
    Kanner, J., S. Harel, and R. Granit. Nitric oxide as an antioxidant. Arch Biochem Biophys. 289: 130–136, 1991.PubMedCrossRefGoogle Scholar
  16. 16.
    Kanner, J., S. Harel, and R. Granit. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids. 27: 46–49, 1992.PubMedCrossRefGoogle Scholar
  17. 17.
    Kennedy, M. C, T. Gan, W. E. Antholine, and D. H. Petering. Metollothionein reacts with Fe2+ and NO to form products with a g = 2.039 ESR signal. Biochem Biophys Res Commun. 196: 632–635, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Khatsenko, O. G., S. S. Gross, A. B. Rifkind, and J. R. Vane. Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci USA. 90: 11147–11151, 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    Lancaster jr, J. R. Diffusion and reactions of nitric oxide in isolated hepatocytes. First International Conference: Biochemistry and Molecular Biology of Nitric Oxide. Los Angeles, CA: July 16–21, 1994, 1994.Google Scholar
  20. 20.
    McDonald, B., B. Reep, E. G. Lapetina, and L. Molina y Vedia. Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets. Proc Natl Acad Sci USA. 90: 11122–11126, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Molina y Vedia, L., B. McDonald, B. Reep, B. Brune, M. Di Silvio, T. R. Billiar, and E. G. Lapetina. Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem. 261: 24929–24932, 1992.Google Scholar
  22. 22.
    Moncada, S. and A. Higgs. Mechanisms of disease: The L-arginine-nitric oxide pathway. N Engl J Med. 329: 2002–2012, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    Nüssler, A. K. and T. R. Billiar. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 54: 171–178, 1993.PubMedGoogle Scholar
  24. 24.
    Nüssler, A. K., M. Di Silvio, T. R. Billiar, R. A. Hoffman, D. A. Geller, R. Selby, J. Madariaga, and R. L. Simmons. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med. 176: 261–264, 1992.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Keefe, D., R. Ebel, and J. Peterson. Studies of the oxygen binding site of cytochrome p-450. J Biol Chem. 253: 3509–3516, 1978.Google Scholar
  26. 26.
    Palmer, R. M., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 327: 524–526, 1987.PubMedCrossRefGoogle Scholar
  27. 27.
    Park, G. R. Pharmcokinetics and pharmacodynamics in the critically ill patient. Xenobiotica. 23: 1195–1230, 1993.PubMedCrossRefGoogle Scholar
  28. 28.
    Peterson, T. C. and K. W. Renton. Kupffer cell factor mediated depression of hepatic parenchymal cell cytochrome P450. Biochem Pharmcol. 35: 1491–1497, 1986.CrossRefGoogle Scholar
  29. 29.
    Renton, K. Relationships between the enzymes of detoxication and host defense mechanism. In: Caldwell J, Jakoby W, eds. Biological basis of detoxication. New York; Academic Press, Inc.; 1983: 307–324.CrossRefGoogle Scholar
  30. 30.
    Rogers, N. E. and L. J. Ignarro. Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun. 189: 242–249, 1992.PubMedCrossRefGoogle Scholar
  31. 31.
    Shedlofsky, S. I., B. C. Israel, C. J. McClain, D. B. Hill, and R. A. Blouin. Endotoxin administration to humans inhibits heaptic cytochrome P450-mediated drug metabolism. J Clin Invest. 94: 2209–2214, 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Stadler, J., D. Barton, H. Beil-Moeller, S. Diekmann, C. Hierholzer, W. Erhard, and C. D. Heidecke. Hepatocyte nitric oxide biosynthesis inhibits glucose output and competes with urea synthesis for L-arginine. Am J Physiol. 268: G183–188, 1995.PubMedGoogle Scholar
  33. 33.
    Stadler, J., H. A. Bergonia, M. Di Silvio, M. A. Sweetland, T. R. Billiar, R. L. Simmons, and J. R. Lancaster jr. Nonheme iron-nitrosyl complex formation in rat hepatocytes: detection by electron paramagnetic resonance spectroscopy. Arch Biochem Biophys. 302: 4–11, 1993.PubMedCrossRefGoogle Scholar
  34. 34.
    Stadler, J., T. R. Billiar, R. D. Curran, L. A. McIntyre, H. I. Georgescu, R. L. Simmons, and C. H. Evans. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol. 147: 3915–3920, 1991.PubMedGoogle Scholar
  35. 35.
    Stadler, J., T. R. Billiar, R. D. Curran, D. J. Stuehr, J. B. Ochoa, and R. L. Simmons. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol. 260: C910–916, 1991.PubMedGoogle Scholar
  36. 36.
    Stadler, J., B. G. Harbrecht, M. Di Silvio, R. D. Curran, M. L. Jordan, R. L. Simmons, and T. R. Billiar. Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol. 53: 165–172, 1993.PubMedGoogle Scholar
  37. 37.
    Stadler, J., J. Trockfeld, W. A. Schmalix, T. Brill, H. Greim, J. R. Siewert, and J. Doehmer. Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci USA. 91: 3559–3563, 1994.PubMedCrossRefGoogle Scholar
  38. 38.
    Stamler, J. S., O. Jaraki, J. Osborne, D. I. Simon, J. Keaney, J. Vita, D. Singel, C. R. Valeri, and J. Loscalzo. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA. 89: 7674–7677, 1992.PubMedCrossRefGoogle Scholar
  39. 39.
    Stamler, J. S., D. J. Singel, and J. Loscalzo. Biochemistry of nitric oxide and its redox-activated forms. Science. 258: 1898–1902, 1992.PubMedCrossRefGoogle Scholar
  40. 40.
    Stuehr, D. J. and C. F. Nathan. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 169: 1543–1555, 1989.PubMedCrossRefGoogle Scholar
  41. 41.
    Tsai, A.-L., C. Wei, and R. J. Kulmacz. Interaction between nitric oxide and prostaglandin H synthase. Arch Biochem Biophys. 313: 367–372, 1994.PubMedCrossRefGoogle Scholar
  42. 42.
    Vane, J. R., J. A. Mitchell, I. Appleton, A. Tomlinson, D. Bishop-Bailey, J. Croxtall, and D. A. Willoughby. Inducible isoforms of cyclooxygenase and nitric oxide synthase in inflammation. Proc Natl Acad Sci USA. 91: 2046–2050, 1994.PubMedCrossRefGoogle Scholar
  43. 43.
    Wink, D. A., Y. Osawa, J. F. Darbyshire, C. R. Jones, S. C. Eshenaur, and R. W. Nims. Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys. 300: 115–123, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. Stadler
    • 1
  • W. A. Schmalix
    • 2
  • J. Doehmer
    • 2
  1. 1.Chirurgische Klinik und PoliklinikTechnische Universität MünchenMünchenGermany
  2. 2.Institut für Toxikologie und UmwelthygieneTechnische Universität MünchenMünchenGermany

Personalised recommendations