Advertisement

Selective Depletion of Mitochondrial Glutathione Content by Pivalic Acid and Valproic Acid in Rat Liver

Possibility of a Common Mechanism
  • U. Zanelli
  • P. Puccini
  • D. Acerbi
  • P. Ventura
  • P. G. Gervasi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 387)

Abstract

Pivalic acid (PIV) or trimethylacetic acid is a compound thought to be harmless and widely used for pro-drug production, such as pivampicillin and pivaloyloxymethyl dopa ester (Binderup et al. 1971, Wickers et al. 1985). These pro-drugs administrated to rat and monkey undergo an hydrolysis releasing free PIV, which is excreted in urine mostly unchanged or as carnitine or glucuronic acid conjugates.

Keywords

Valproic Acid Mitochondrial Fraction Sodium Valproate Mercapturic Acid Selective Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bélanger, P.M., Desgagné, M. and Bruguerolle, B. (1991). Temporal variations in microsomal lipid peroxidation and glutathione concentration of rat liver. Drug Metabol. Dipos. 19: 241–244.Google Scholar
  2. Binderup, E, Gotfrendsen, W.O. and Roholt, J., (1971). Orally active cefaloglycin esters. Journal of Antibiotics 24: 767–773.PubMedCrossRefGoogle Scholar
  3. Habig, W.H., Pabst, M.J. and Jacoby W.B. (1974). The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249: 7130–7139.PubMedGoogle Scholar
  4. Kassahun, K., Farrel, K. and Abbot, F. (1991). Identification and characterization of the glutathionc and N-acetylcysteine conjugates of (E)-2-propyl-2,4-pentadienoic acid, a toxic metabolite of valproic acid, a toxic, in rat and humans. Drug Metabol. Dispos. 19: 525–535.Google Scholar
  5. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with Folin phenol reagent. J.Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  6. Melegh, B., Kerner, J. and Bieber, L.L. (1987). Pivampicillin-promoted excretion of pivaloyl carnitine in humans. Biochem. Pharmacol. 36: 3405–3409.PubMedCrossRefGoogle Scholar
  7. Meredith, M.J. and Reed, D.J. (1982). Status of the mitochondrial pool of glutathione in the isolated hepatocytes. J. Biol: Chem. 257: 3747–3753.Google Scholar
  8. Ruff, L.J. and Brass, E.P. (1991). Metabolic effects of pivalate in isolated rat hepatocytes. Toxicol. App. Pharmacol. 110: 295–302.CrossRefGoogle Scholar
  9. Wickers, S., Duncan, C.A.H., Withe, S.D., Ramjit, H.G., Smith, J.L., Walker, S.W., Flynn, H.Q. and Arison, B.H. (1985). Carnitine and glucuronic acid conjugates of pivalic acid. Xenobiotica 15: 453–258.CrossRefGoogle Scholar
  10. Yohana, M. and Tampo, Y. (1987). Bromosulfophthalein abolishes glutathione-dependent protection against lipid peroxidation in rat liver mitochondria. Biochem. Pharmacol. 36: 2831–2837.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • U. Zanelli
    • 1
  • P. Puccini
    • 2
  • D. Acerbi
    • 2
  • P. Ventura
    • 2
  • P. G. Gervasi
    • 1
  1. 1.Istituto di Mutagenesi e Differenziamento CNR PisaPisaItaly
  2. 2.Chiesi FarmaceuticiParmaItaly

Personalised recommendations