Advertisement

Computer Simulation of Arterial Blood Flow

Vessel Diseases Under the Aspect of Local Haemodynamics
  • K. Perktold
  • G. Rappitsch

Abstract

Since the late sixties it has been increasingly accepted that haemodynamic factors are of importance in the initiation and development of atherosclerotic lesions, and the role of blood flow dynamics as a localizing factor in the genesis of atherosclerosis has provided considerable impetus for the investigation of arterial flow phenomena during the last two decades. Clinical observations have proven that atherosclerosis, a disease of large and medium size arteries, has a pattern which is of a local nature whereby regions of branchings and of sharp curvatures are sites of enhanced predilection. From the fluid dynamical point of view these are zones where the flow is highly disturbed. Because of the influence of the geometry on the detailed characteristics of the pattern of blood flow in arteries, the focal nature of atherosclerosis and its relationship to vessel geometry provides indirect evidence for a role of blood flow in the development of the disease. The vascular geometry may be a risk factor (Friedman et al., 1983, Nerem, 1984), one which could be genetically passed on from one generation to the next, and thus, could be a part of the family history of a human being.

Keywords

Wall Shear Stress Pulsatile Flow Arterial Blood Flow Secondary Motion Curve Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anayiotos, A., 1990, Fluid Dynamics at a Compliant Bifurcation Model. PhD-Thesis, Georgia Inst. of Technology.Google Scholar
  2. Back, L.H., Radbill, J.R. and Crawford, D.W., 1977, Analysis of oxygen transport from pulsatile, viscous blood flow to diseased coronary arteries of man. J. Biomechanics, 10, 763–774.CrossRefGoogle Scholar
  3. Berger, S.A., Talbot, L. and Yao, L.S., 1983, Flow in curved pipes. Annual Reviews in Fluid Mechanics, 15, 461–512.CrossRefGoogle Scholar
  4. Brooks, A.N. Hughes, T.J.R., 1982, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp. Meth. in Appl. Mech. and Eng., 32, 199–259.CrossRefGoogle Scholar
  5. Caro, C.G., Fitz-Gerald, J.M. and Schroter, R.C., 1971, Atheroma and arterial wall shear: Observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. Proc. Roy. Soc. Lond., 177, 109–159.CrossRefGoogle Scholar
  6. Caro, C.G. and Parker, K.H. 1987, The effect of hemodynamic factors on the arterial wall. In Atherosclerosis-Biology and Clinical Science (Edited by Olsson, A.G.), pp. 183-195. Churchill Livingstone, Edinburgh.Google Scholar
  7. Chorin, A.J., 1968, Numerical solution of the Navier Stokes equations. Math. Comput., 22, 745–762.CrossRefGoogle Scholar
  8. Desyo, D., 1990, Radiogrammetric analysis of carotid bifurcation: hemodynamic-atherogenetic repercussions on surgical practice, in: Biofluid mechanics (Edited by D. Liepsch), 45-56, Springer Verlag.Google Scholar
  9. Donea, J., Giuliani, S., Laval, H. and Quartapelle, L., 1981, Solution of the unsteady Navier-Stokes equations by a finite element projections method. In: Computational techniques in transient and turbulent flow (Edited by Taylor, C. and Morgan, K.), Pineridge Press, 97-132, Swansea.Google Scholar
  10. Ernst, L.J., 1981, A geometrically nonlinear finite element shell theory. Thesis, Laboratory of Engineering Mechanics, Delft University of Technology, The Netherlands.Google Scholar
  11. Friedman, M.H. and Ehrlich, L.W., 1975, Effect of spatial variations in shear on diffusion at the wall of an arterial branch. Circulation Research, 37, 446–454.PubMedCrossRefGoogle Scholar
  12. Friedman, M.H., Deters, O.J., Mark, F.F., Bargeron, C.B. and Hutchins, G.M., 1983, Arterial geometry affects hemodynamics-a potential risk factor for atherosclerosis. Atherosclerosis, 46, 225–231.PubMedCrossRefGoogle Scholar
  13. Friedman, M.H., 1989, A biological plausible model of thickening of arterial intima under shear. Arteriosclerosis, 9, 511–522.PubMedCrossRefGoogle Scholar
  14. Fung, Y.C., 1981, Biomechanics — Mechanical Properties of Living Tissues. Springer Verlag, New York Heidelberg Berlin.Google Scholar
  15. Gallagher, R. H., 1973, Finite element analysis of geometrically nonlinear problems. In Theory and Practice in finite élément structural analysis (Edited by Y. Yamada and R.H. Gallagher), Tokyo Univ. Press.Google Scholar
  16. Girault, H.G. and Raviart, P.A., 1980, Finite element methods for Navier-Stokes equations. Springer Verlag, Berlin.Google Scholar
  17. Glagov, S., Zarins, C., Giddens, D.P. and Ku, D.N., 1988, Hemodynamics and atherosclerosis. Arch. Pathol. Lab. Med., 112, 1018–1031.PubMedGoogle Scholar
  18. Goldsmith, H.L., 1972, The flow of model particles and blood cells and its relation to thrombogenesis. Prog. Hemost. Thromb., 1, 97–112.PubMedGoogle Scholar
  19. Gresho, P.M., Chan, S.T., Lee, R.L. and Upson, C.D., 1984a, A modified finite element method for solving the time-dependent incompressible Navier-Stokes equations. Part 1: theory. Int. J. Num. Meth. Fluids, 4, 557–598.Google Scholar
  20. Gresho, P.M., Chan, S.T., Lee, R.L. and Upson, C.D., 1984b, A modified finite element method for solving the time-dependent incompressible Navier-Stokes equations. Part 2: applications. Int. J. Num. Meth. Fluids, 4, 619–640.Google Scholar
  21. He, X., 1993, Numerical simulations of blood flow in human coronary arteries. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, Ga., USA.Google Scholar
  22. Hibbit, Karlsson & Sorensen Inc., 1993, ABAQUS (Version 5.3). 1080 Main Street, Pawtucket, R. I. 02860.Google Scholar
  23. Hilbert, D.,1987, Ein Finite Elemente-Aufspaltungsverfahren zur numerischen Lösung der Navier-Stokes Gleichungen und seine Anwendung auf die Strömung in Rohren mit elastischen Wänden. Diss., TU-Graz.Google Scholar
  24. Hofer, M. and Perktold, K., 1995, Vorkonditionierter konjugierter Gradienten Algorithmus für gro ße schlecht konditionierte unsymmetrische Gleichungssysteme. Supplement Volume ZAMM 75 SII, S641–S642.Google Scholar
  25. Horsten, J.B.A.M., Steenhoven, A.A. van and Dongen, M.E.H. van, 1989, Linear propagation of pulsatile waves in visco-elastic tubes. J. Biomechanics, 22, 477–484.CrossRefGoogle Scholar
  26. Hughes, T.J.R., Liu, W.K. and Zimmermann, T.K., 1981, Lagrangian-Eulerian finite element formulation in incompressible viscous flows, Comp. Methods Appl. Mech. Engrg., 29, 329–349.CrossRefGoogle Scholar
  27. Motomiya, M. and Karino, T., 1984, Flow patterns in the human carotid artery bifurcation. Stroke, 15, 50–56.PubMedCrossRefGoogle Scholar
  28. Koiter, W.T. and Simmonds, J. G., 1973, Foundations of shell theory. In Proc. 13th Int. Congress Theor. Appl. Mech., pp. 150-176, Springer 1973.Google Scholar
  29. Ku, D.N., Giddens, D.P., Zarins, C.K. and Glagov, S., 1985, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis, 5, 293–302.PubMedCrossRefGoogle Scholar
  30. Kumar, A. and Kumar, N.S., 1988, A new approach to grid generation based on local optimisation, In: Numerical Grid Generation in Computational Fluid Mechanics (Edited by S. Sengupta, J. Häuser, P.R. Eiseman, J.F. Thompson), Pineridge Press, Swansea, U.K., 177–184.Google Scholar
  31. Liepsch, D., Thurston, G. and Lee, M., 1991, Studies of fluids simulating blood-like rheological properties and applications in models of arterial branches. Biorheology, 28, 39–52.PubMedGoogle Scholar
  32. Lou, Z. and Yang, W.J., 1992, Biofluid dynamics at arterial bifurcations. Critical Reviews in Biomed. Eng., 19, 455–493.Google Scholar
  33. Low. M., Perktold, K. and Raunig, R., Hemodynamics in rigid and distensible saccular aneurysms: A numerical study of pulsatile flow characterisitcs.Google Scholar
  34. Mackerle, J., 1992, Finite and boundary element methods in biomechanics: a bibliography (1976–1991). Engineering Computations, 9, 403–436.CrossRefGoogle Scholar
  35. McDonald, D.A., 1974, Blood Flow in Arteries, Arnolds, London.Google Scholar
  36. Nerem, R.M., Cornhill J.F., 1980, The role of fluid mechanics in atherogenesis. ASME J.-Biomech. Eng., 102, 181–189.CrossRefGoogle Scholar
  37. Nerem, R.M., 1984, Atherogenesis: hemodynamics, vascular geometry, and the endothelium, Biorheology, 21, 565–569.PubMedGoogle Scholar
  38. Osenberg, H.P., 1991, Simulation des arteriellen Bluflusses — Ein allgemeines Modell mit Anwendung auf das menschliche Hirngefaßsystem. Diss., ETH-Zürich 9342, IBT Zürich.Google Scholar
  39. Patel, D.J. and Vaishnav, R.N., 1980, Basic hemodynamics and its role in disease processes. University Park Press, Baltimore.Google Scholar
  40. Pedley, T.J., 1980, The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, U.K.CrossRefGoogle Scholar
  41. Perktold, K., Florian, H. and Hilbert, D., 1987, Analysis of pulsatile blood flow: a carotid siphon model. J. Biomed.Eng., 9,46–53.PubMedCrossRefGoogle Scholar
  42. Perktold, K., 1987, On numerical simulation of three-dimensional physiological flow problems. Ber. Math. Stat. Sektion, Forschungsges. Joanneum Graz, Nr. 280/5.Google Scholar
  43. Perktold, K., Florian, H., Hilbert, D. Peter, R.O., 1988, Wall shear stress distribution in the human carotid siphon model during pulsatile flow. J. Biomechanics, 21, 663–671.CrossRefGoogle Scholar
  44. Perktold, K. and Resch, M., 1990, Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis. J. Biomed. Eng., 12, 111–123.PubMedCrossRefGoogle Scholar
  45. Perktold, K., Peter, R.O., Resch, M. and Langs, G., 1991a, Pulsatile non-Newtonian flow characteristics in three-dimensional carotid bifurcation models: numerical study of flow phenomena under different bifurcation angle. J. Biomed. Eng., 13, 507–515.PubMedCrossRefGoogle Scholar
  46. Perktold, K., Resch, M. and Florian, H., 1991b, Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid artery bifurcation model. Transactions of the ASME-J. Biomech. Eng., 113, 464 464–475.CrossRefGoogle Scholar
  47. Perktold, K., Nerem, R.M. and Peter, R.O., 1991c, A numerical calculation of flow in a curved tube model of the left main coronary artery. J. Biomechanics, 24, 175–189.CrossRefGoogle Scholar
  48. Perktold, K., Resch, M. and Peter, R.O., 1991d, Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomechanics, 24, 409–420.CrossRefGoogle Scholar
  49. Perktold, K. and Resch, M., 1991, Numerische Lösung der Navier-Stokes Gleichungen für Verallgemeinerte Newtonsche Fluide. Z. angew. Math. Mech., 71, 5, T416–T419.Google Scholar
  50. Perktold, K., Tatzl, H. and Schima, H., 1993, Computer simulation of hemodynamic effects in distal vascular graft anastomoses. ASME-BED-Vol. 26, (Edited by Tarbell, J. M.), 91–94, ASME, New York.Google Scholar
  51. Perktold, K. and Rappitsch, G., 1993, Numerical analysis of arterial wall mechanics and local blood flow phenomena. In: Advances in Bioengineering, ASME-BED-Vol. 26, (Edited by Tarbell, J. M.), 127–131, ASME, New York.Google Scholar
  52. Perktold, K. and Rappitsch, G., 1994, Mathematical modeling of local arterial flow and vessel mechanics. In: Computational methods for fluid-structure interaction (Edited by Crolet, J. and Ohayon, R.), 230-245.Google Scholar
  53. Pitman Research Notes in Mathematics Series 306, Longman Scientific & Technical, J. Wiley and Sons, New York.Google Scholar
  54. Perktold, K., Thurner, E. and Kenner T., 1994a, Flow and stress characteristics in compliant carotid artery bifurcation models. Medical amp; Biological Engineering & Computing, 32, 19–26.CrossRefGoogle Scholar
  55. Perktold, K., Tatzl, H. and Rappitsch, G., 1994b, Flow dynamic effects of the anastomotic angle: a numerical study of pulsatile flow in vascular graft anastomoses models. Technology and Health Care, 1,197–207.Google Scholar
  56. Perktold, K., Leuprecht, A. and Peter, R.O., 1994c, Problems in applications of viscoelastic models to the numerical analysis of arterial blood flow. In: Biofluid Mechanics (Edited by Liepsch, D.), VDI-Verlag, Reihe 17: Biotechnik, Nr. 107, 471-476.Google Scholar
  57. Perktold, K., Rappitsch, G. and Liepsch, D., 1994d, Flow and wall shear stress in the human carotid artery bifurcation: computer simulation under anatomically realistic conditions, In: Advances in Bioengineering 1994 (Edited by Askew, M.J.), ASME-BED-Vol. 28, 437–438. ASME, New York.Google Scholar
  58. Perktold, K. and Rappitsch, G., 1995, Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomechanics (in press).Google Scholar
  59. Perktold, K., Rappitsch, G. and Pernkopf, E., 1995, Arterial mass transport in curved tubes: a computational study of convective diffusion processes including shear dependent wall permeability. In: Proc. ASME — Summer Bioengineering Conference 1995, Beaver Creek.Google Scholar
  60. Rappitsch, G., Perktold, K. and Guggenberger, W., 1993, Numerical analysis of intramural stresses and blood flow in arterial bifurcation models. In: Computational Biomedicine (Edited by K.D. Held, C.A. Brebbia, R.D. Ciskowski and H. Power). 149–156. Computational Mechanics Publications, Southampton Boston.Google Scholar
  61. Rappitsch, G. and Perktold, K. 1995, Computer simulation of convective diffusion processes in large arteries. J. Biomechanics (accepted).Google Scholar
  62. Reneman, R.S., van Merode, T., Hick, P. and Hoeks, A.P.G., 1985, Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of various ages. Circulation 71, 500–509.PubMedCrossRefGoogle Scholar
  63. Reuderink, P., 1991, Analysis of the flow in a 3D distensible model of the carotid artery bifurcation, Thesis, Eindhoven Institute of Technology, The Netherlands.Google Scholar
  64. Rindt, C.C.M., Van Steenhoven, A.A., Janssen, J.D., Reneman, R.S. and Segal, A., 1990, A numerical and experimental analysis of the flow field in a three-dimensional model of the human carotid bifurcation. J. Biomechanics, 23, 461–473.CrossRefGoogle Scholar
  65. Steiger, H.-J., 1990, Pathophysiology of Development and Rupture of Cerebral Aneurysms. Acta Neurochirurgica, Supplementum 48, Springer-Verlag, Wien, New York.Google Scholar
  66. Stergiopulos, N., Pythoud, F. and Meister, J.-J., 1994, Analysis of the Forward and Backward Running Waves in Arteries: The Role of Nonlinear Wall Elasticity. In: Biofluid Mechanics (Edited by Liepsch, D.), VDI-Verlag, Reihe 17: Biotechnik, Nr. 107, 727-732.Google Scholar
  67. Sugawara, M., Kajiya, F., Kitabatake, A. and Matsuo, H. (Editors), 1989. Blood Flow in the Heart and Large Vessels. Springer-Verlag, Tokyo, Berlin, New York.Google Scholar
  68. Temam, R. (1979), Navier-Stokes Equations. North Holland, Amsterdam.Google Scholar
  69. Thurston, G.B., 1979, Rheological parameters for the viscosity, viscoelasticity and thixotropy fo blood, Biorheology, 16, 149–162.PubMedGoogle Scholar
  70. Trubel, W., Moritz, A., Schima, H., Raderei; F., Scherer, R., Ullrich, R., Losert, U. and Polterauer, P., 1994, Compliance and formation of distal anstomotic intimai hyperplasia in dacron mesh tube constricted veins used as arterial bypass grafts. ASAIO Journal 1994, M273-M278.Google Scholar
  71. Yamaguchi, T., Nakano, A., Hanai, S., 1990, Three dimensional shear stress distribution around small atherosclerotic plaques with steady and unsteady flow, In: Biomechanical Transport Processes (Edited by Mosora, F. et al.). Plenum Press, New York, 173–182.Google Scholar
  72. Zarins, C.K., Giddens, D.P., Bhardvaj, B.K., Sottiurai, V.S., Mabon, R.F. and Glagov, S., 1983, Carotid bifurcation atherosclerosis — quantitative correlation of plaque localization with flow velocity proflies and wall shear stress. Circulation Research, 53. 502–514.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • K. Perktold
    • 1
  • G. Rappitsch
    • 1
  1. 1.Institute of MathematicsTechnical University GrazGrazAustria

Personalised recommendations