Biological Control of Diseases of Crops Grown in Covered and Environmentally Controlled Structures

  • Ralph Baker
Part of the NATO ASI Series book series (NSSA, volume 230)


In the past half-century, major advances in control of plant diseases in covered and environmentally controlled structures occurred. Pathogen-free propagative material (Baker, 1957; Baker and Phillips, 1962; Davis et al., 1977; Phillips, 1968) insured exclusion of pathogens from hosts grown in confined areas. Because high income crops were grown in such structures, relatively expensive eradicative control measures (e.g., steaming, fumigation) were cost effective. Such advanced technology resulted in the highest degree of plant disease control in covered and environmentally controlled conditions in comparison with other field-oriented agricultural industries.


Biological Control Fusarium Oxysporum Biocontrol Agent Fusarium Wilt Trichoderma Harzianum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahmad, J. S., and Baker, R., 1987a, Competitive saprophytic activity of rhizosphere-competent mutants of Trichoderma harzianum, Phytopathology, 77: 358.Google Scholar
  2. Ahmad, J. S., and Baker, R., 1987b, Rhizosphere competence of Trichoderma harzianum, Phytopathology 77: 181.Google Scholar
  3. Ahmad, J. S., and Baker, R., 1988a, Growth of rhizosphere-competent mutants of Trichoderma harzianum on carbon substrates, Can. J. Microbial. 34: 807.Google Scholar
  4. Ahmad, J. S., and Baker, R., 1988b, Implication of rhizosphere-competence of Trichoderma harzianum Can. J. Microbial. 34: 229.Google Scholar
  5. Ahmad, J. S., and Baker, R., 1988c, Rhizosphere competence of benomyltolerant mutants of Trichoderma spp., Can. J. Microbiol. 34: 694.Google Scholar
  6. Alabouvette, C., Couteaudier, Y., and Louvet, J., 1984, Recherches sur la resultant de sols aux maladies, IX Dynamique des populations du Fusarium spp. et de Fusarium oxysporum f. sp. melonis dans un sol resultant et dans un sol sensible aux fusarioses vasculaires, Agronomie 4: 729.Google Scholar
  7. Alabouvette, C., Tramier, R., and Grovet, D., 1980, Recherches sur la resistance des sol aux maladies, VIII. Perspectives d’utilisation de la resistance des sols pour lutter contre les fusarioses vasculaires, Ann. Phytopathol. 12: 82.Google Scholar
  8. Baker, K. F., 1957, The U. C. system for producing healthy container-grown plants, Univ. Calif. Expt. Sta. Manual, 23.Google Scholar
  9. Baker, R., 1978, Inoculum potential, pages 137–157, in: “Plant Disease, An Advanced Treatise. Vol. 2. How Disease Develops in Populations”, J. G. Horsfall,and E. B. Cowling, eds., Academic Press, New York.Google Scholar
  10. Baker, R., 1980, Measures to control Fusarium and Phialophora wilt of carnations, Plant Dis. 64: 743.Google Scholar
  11. Baker, R., 1988, Trichoderma spp. as plant growth stimulants, CRC Critical Rev., 7: 97.Google Scholar
  12. Baker, R., 1989a, Improved Trichoderma spp. for promoting crop productivity, Trends Biotech., 7: 34.CrossRefGoogle Scholar
  13. Baker, R., 1989b, Some perspectives on the application of molecular approaches to biocontrol problems, in: “Biotechnology of Fungi for Improving Plant Growth”, J. M. Whipps,and R. D. Lumsden, eds., Cambridge University Press, Cambridge.Google Scholar
  14. Baker, R., 1990, An overview of current and future strategies and models for biological control, pages 375–388, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., C.A.B. International, Wallingford.Google Scholar
  15. Baker, R., 1991, Induction of rhizosphere competence in the biocontrol fungus Trichoderma, in: “The Rhizosphere and Plant Growth”, D. L. Keister, and P. B. Cregan, eds., Kluiver Academic Publishers, Amsterdam.Google Scholar
  16. Baker, R., and Harman, G., 1981, Increased flower production by application of fungicides, Colo. Grnh. Grow. Assoc. Bul., 376: 1.Google Scholar
  17. Baker, R., and Phillips, D. J., 1962, Obtaining pathogen-free stock by shoot tip culture, Phytopathology, 52: 1242.Google Scholar
  18. Baker, R., Elad, Y., and Chet, I., 1984, The controlled experiment in the scientific method with special emphasis on biological control, Phytopathology 74: 1091.Google Scholar
  19. Baker, R., Elad, Y., and Sneh, B., 1986, Physical, biological, and host factors in iron competition in soils, in: “Iron, Siderophores, and Plant Diseases”, T. R. Swinburne, ed., Plenum Pub. Corp., New York.Google Scholar
  20. Baker, R., Hanchey, P., and Dottarar, S., 1978, Protection of carnation against Fusarium stem rot by fungi, Phytopathology 68: 1485.Google Scholar
  21. Biles, C. L., and Martyn, R. D., 1989, Local and systemic resistance induced in watermelons by formae specialis of Fusarium oxysporum, Phytopathology 79: 859.Google Scholar
  22. Chang, Y. C., Chang, Y. C., Baker, R., Kliefeld, O., and Chet, I., 1986, Increased growth of plants in the presence of the biological control agent, Trichoderma harzianum, Plant Dis. 70: 145.Google Scholar
  23. Davis, M. J., Baker, R., and Hanan, J. J., 1977, Clonal multiplication of carnation by micropropagation, J. Amer. Soc. Hort. Sci., 102: 84.Google Scholar
  24. Evans, S. G., 1978, Chemicals only a partial answer to carnation Fusarium wilt, The Grower, 89: 113.Google Scholar
  25. Fillippi, C., Bagnoli, G., Volterrani, M., and Picci, G., 1987, Antagonistic effects of soil bacteria on Fusarium oxysporum f. sp. dianthi (Prill, and Del.) Snyd. and Hans. III. Relation between protection against Fusarium wilt on carnation and bacterial antagonists colonization on roots, Plant Soil 98: 161.Google Scholar
  26. Garibaldi, A., and Gullino, M. I., 1987, Fusarium wilt of carnations: present situation, problems, and perspectives, Acta Hort., 216: 45.Google Scholar
  27. Garibaldi, A., Brunatti, F., and Gullino, M. L., 1986, Suppression of Fusarium wilt of carnation by competitive non-pathogenic strains of Fusaria, Mededelingen ran de Faculteio Landbouwwetenschappen Ryksunwersiteit Gent 51: 633.Google Scholar
  28. Garibaldi, A., DallGuda, C., and D’Aquila, F., 1983, Osservazioni su terreni repressivi nei confronti de Fusarium oxysporum f. sp. dianthi (Prill. et Del.) Snyd. et Hans., Rivista della Ortoflorofruitticoltura Italiana 67: 251.Google Scholar
  29. Hadar, Y., Chet, I., and Henis, Y., 1979, Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harzianum, Phytopathology 69: 64.Google Scholar
  30. Holley, W. D., and Baker, R., 1991, “Carnation Production”, Kendall/Hunt Pub. Co., Dubuque.Google Scholar
  31. Ishida, C., Tani, T., and Murata, M., 1981, Protection of cucumber against anthracnose by hypovirulent strains of Fusarium oxysporum f. sp. cucumerium, Ann. Phytopathol. Soc. Jpn., 47: 352.Google Scholar
  32. Kloepper, J. W., and Schroth, M. N., 1981, Relationship ‘of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora, Phytopathology 71: 1020.Google Scholar
  33. Kloepper, J. W., Lifshitz, R., and Schroth, M. N., 1988, Pseudomonas inoculants to benefit plant production, ISI Atlas of Science 1988: 60.Google Scholar
  34. Landenperä, M-L., 1987, The control of Fusarium wilt of carnation with a Streptomyces preparation, Acta Hort. 216: 85.Google Scholar
  35. Lifshitz, R., Windham, M. T., and Baker, R., 1986, Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp., Phytopathology 76: 720.Google Scholar
  36. Lindsay, W. L., 1979, “Chemical Equilibria in Soils”, John Wiley and Sons, New York.Google Scholar
  37. McCain, A. H., Pyeatt, L. E., Byrne, T. G., and Farnham, D. S., 1980, Sup- pressive soil reduces carnation disease, Calif. Agric. 34: 9.Google Scholar
  38. Mandeel, Q., and Baker, R., 1991, Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum, Phytopathology: 81: 462.Google Scholar
  39. Ogawa, K., and Komada, H., 1984, Biological control of sweet potato by nonpathogenic Fusarium oxysporum, Ann. Phytopath. Soc. Jpn., 50: 1.Google Scholar
  40. Park, C. S., Paulitz, T. C., and Baker, R., 1988, Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum, Phytopathology 78: 190.Google Scholar
  41. Paulitz, T. C., Park, S., and Baker, R., 1987, Biological control of Fusarium wilt of cucumber with nonpathogenic isolates of Fusarium oxysporum Can. J. Microbiol. 33: 349.Google Scholar
  42. Phillips, D. J., 1968, Carnation shoot tip culture, Colo. St. Univ. Expt. Sta. Tech. Bul., 102.Google Scholar
  43. Pizano, M., 1987, Carnation culture in Colombia, state of the art, Acta Hort. 216: 29.Google Scholar
  44. Rattink, H., 1983, Spread and control of Fusarium wilt of carnations on artificial substrates, Acta Hort. 141: 103.Google Scholar
  45. Salt, G. H., 1978, The increasing interest in minor pathogens, in: “Soilborne Plant Pathogens”, B. Schippers and W. Gams, eds., Academic Press, New York.Google Scholar
  46. Scher, F. M., and Baker, R., 1980, Mechanism of biological control in a Fusarium-suppressive soil, Phytopathology 70: 412.Google Scholar
  47. Scher, F. M., and Baker, R., 1982, Induction of suppressiveness in soil to Fusarium wilt pathogens with Pseudomonas putida and a synthetic iron chelate, Phytopathology 72: 1567.Google Scholar
  48. Scheider, R. W., 1984, Effects of nonpathogenic strains of Fusarium oxysporum on celery root infections by Fusarium oxysporum f. sp. apii and a novel use of the Lineweaver-Burk double reciprocal plot technique, Phytopathology 74: 646.Google Scholar
  49. Sneh, B., 1981, Use of rhizosphere chitinolytic bacteria for biological control of Fusarium oxysporum f. sp. dianthi in carnation, Phytopathol. Z., 100: 251.Google Scholar
  50. Sneh, B., Agami, O., and Baker, R., 1985, Biological control of Fusariumwilt in carnation with Serratia liquefaciens and Hanfia alvei isolated from rhizosphere of carnation, Phytopathol. Z. 113: 271.Google Scholar
  51. Tahvonen, R., 1982, The suppressiveness of Finnish light coloured Sphagnum peat, J. Sci. Agric. Soc. Finl. 54: 345.Google Scholar
  52. Tramier, R., Pionnat, J. C., Bettachini, A., and Antonini, C., 1979, Recherches sur la resistance des sols aux maladies. V. Evolution de la fusariose vasculaire de l’oeillett fonction des substrats de culture, Ann. Phytopathol. 11: 477.Google Scholar
  53. Van Peer, R., Van Krik, A. J., Rattink, H., and Schippers, B., 1990, Control of Fusarium wilt of carnation grown on rockwool by Pseudomonas sp. strain WCS417 and by Fe-EDDHA, Neth. J. Plant Pathol. 96: 119.Google Scholar
  54. Wymore, L. A., and Baker, R., 1982, Factors affecting cross-protection in control of Fusarium wilt of tomato, Plant Dis. 66: 908.Google Scholar
  55. Yuen, G. Y., and Schroth, M. N., 1986, Inhibition of Fusarium oxysporum f. sp. dianthi by iron competition with an Alcaligenes sp., Phytopathology, 76: 171.Google Scholar
  56. Yuen, G. Y., Pyeatt, L. F., Besemer, S. T., McCain, A. H., and Schroth, M. N., 1983, Biological control of Fusarium wilt of carnations: progress and prospects, Flower and Nursery Report, 1983/1984 Fall/Spring.Google Scholar
  57. Yuen, G. Y., Schroth, M. N., and McCain, A. H., 1985, Reduction of Fusarium wilt of carnation with suppressive soils and antagonistic bacteria, Plant Dis., 69: 1071.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ralph Baker
    • 1
  1. 1.Plant Pathology and Weed Sciences DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations