Advertisement

Prospects for Management of Natural Suppresiveness to Control Soilborne Pathogens

  • Bob Schippers
Part of the NATO ASI Series book series (NSSA, volume 230)

Abstract

Epidemics of soilborne plant diseases are rare in natural vegetations. If they occur, they seem to originate from a man-made disturbance of the natural equilibrium such as in natural Eucalyptus forests in Australia which enhanced Phytophthora dieback (Malajczuk, 1979).

Keywords

Root Colonization Fusarium Wilt Fluorescent Pseudomonad Disease Suppression Soilborne Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alabouvette, C., 1989, Manipulation of soil environment to create suppressiveness in soils, pages 457–478 in: “Vascular Wilt Diseases of Plants”, E. C. Tjamos, and C. H. Beckman, eds., NATO ASI Series, Vol. H28, Springer Verlag, Berlin.Google Scholar
  2. Alabouvette, C., 1990, Biological Control of Fusarium wilt pathogens in suppressive soils, pages 27–43, in: “Biological Control of Soilborne Plant Pathogens”, D. Hornby, ed., C.A.B. International, Wallingford.Google Scholar
  3. Alabouvette, C., Couteaudier, Y., and Lemanceau, P., 1985, Nature of intra-genic competition between pathogenic and nonpathogenic Fusarium in a wilt suppressive soil, pages 165–178, in: “Iron, siderophores and plant diseases”, T. R. Swinburne, ed., Plenum Press, New York, London.Google Scholar
  4. Alabouvette, C., De La Broise, D., Couteaudier, Y., Lemanceau, P., and Louvet, J., 1987, Utilisation de souches non pathogènes de Fusarium pour lutter contre les fusarioses: situations actuelle dans la practique, EPPO Bulletin, 17: 665.CrossRefGoogle Scholar
  5. Baker, K. F., and Cook, R. J., 1974, Biological Control of Plant Pathogens, W. H. Freeman and Co., San Francisco.Google Scholar
  6. Bakker, A. W., and Schippers, B., 1987, Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. in short potato rotations, Soil Biol. Biochem., 19: 451.Google Scholar
  7. Bakker, A. W., Punte, W. L. M., and Schippers, B., 1991, Inhibition of potato plant growth by HCN-producing Pseudomonas spp. under gnotobiotic conditions, pages 297–300, in: “Biotic Interactions and Soil-borne Diseases; A. B. R. Beemster, G. J. Ballen, M. Gerlagh, M. A. Ruissen, B. Schippers, and A. Tempel, eds., Elsevier, Amsterdam.Google Scholar
  8. Bakker, P. A. H. M., Lamers, J. G., Bakker, A. W., Marugg, J. D., Weisbeek, P. J., and Schippers, B., 1986, The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato, Neth. J. Plant Pathol., 92: 249.Google Scholar
  9. Bakker, P. A. H. M., Van Peer, R., and Schippers, B., 1990, Specificity of siderophores and siderophore receptors and biocontrol by Pseudomonas spp., pages 131–142, in: “Biological Control of Soilborne Plant Pathogens”, D. Hornby, ed., C.A.B. International, Wellingford.Google Scholar
  10. Bakker, P. A. H. M., Van Peer, R., and Schippers, B., 1991, Suppression of soilborne plant pathogens by fluorescent pseudomonads: mechanisms and prospects, pages 217–230, in: “Biotic Interactions and Soilborne Diseases”, A. B. R. Beemster, G. J. Bollen, M. Gerlagh, M. A. Ruissen, B. Schippers, and A. Tempel, eds., Elsevier, Amsterdam.Google Scholar
  11. Bakker, P. A. H. M., Raaijmakers, J. M., Koster, M., Weisbeek, P. J., and Schippers, B., 1992, Siderophores and ferric-siderophore receptors of plant growth-promoting fluorescent pseudomonads, (this volume).Google Scholar
  12. Bull, C. T., Weller, D. M., and Thomashow, L. S., 1991, Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79, Phytopathology, (in press).Google Scholar
  13. Couteaudier, Y., and Alabouvette, C., 1990, Quantitative comparison of Fusarium oxysporum competitiveness in relation to carbon utilization, FEMS Microbial. Ecol., 74: 261.Google Scholar
  14. Défago, G., and Haas, D., 1990, Pseudomonads as antagonists of soilborne plant pathogens: Modes of action and genetic analysis, pages 249–291 in: “Soil Biochemistry”, J. M. Bollac and G. Stotzky, eds., Marcel Dekker, New York, Basel.Google Scholar
  15. Défago, G., Berling, C. H., Burger, U., Haas, D., Kahr, G., Keel, C., Voisard, P., and Wüthrich, B., 1990, Suppression of black root rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: Potential applications and mechanisms, pages 93–105, in: “Biological Control of Soilborne Plant Pathogens”, D. Hornby, ed., C. A. B. International, Wellingford.Google Scholar
  16. Elad, Y., and Baker, R., 1985, The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp., Phytopathology, 75: 1053.CrossRefGoogle Scholar
  17. Geels, F. P., and Schippers, B., 1983, Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistance following treatment of seed potatoes, Phytopathol. Z., 108: 207.Google Scholar
  18. Geels, F. P., Schmidt, E. D. L., and Schippers, B., 1985, The use of 8-hydroxyquinolin for the isolation of plant growth-stimulating rhizosphere pseudomonads, Biol. Fert. Soils, 1: 167.Google Scholar
  19. Gill, P. R., and Warren, G. J., 1988, An iron antagonized fungistatic agent that is not required for iron assimilation from a fluorescent rhizosphere pseudomonad, J. Bact., 170: 163.PubMedGoogle Scholar
  20. Haas, D., Keel, C., Laville, J., Maurhofer, M., Oberhänsh T., Schnider, U., Voisard, C., Wüthrich, C., and Défago, G., 1991, Secondary metabolites of Pseudomonas fluorescens strain CHAO involved in this suppression of root diseases, pages 450–456, in: “Advances in Molecular Genetics of Plant-Microbe Interactions” Vol. 1, H. Hennecke,and D. P. S. Verman, eds., Kluwer Academic Publ., Dordrecht, Boston, London.Google Scholar
  21. Hamdan, H., 1988, The fluorescent siderophore of Pseudomonas fluorescens: Role in suppression of Gaeumannomyces graminis var. tritici and genetic analysis of siderophore production, Ph.D. Thesis, Washington State University, Pullman.Google Scholar
  22. Keel, C., Voisard, C., Berlin, C. H., Kahr, G., and Défago, G., 1989, Iron sufficiency, a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions, Phytopathology, 79: 584.CrossRefGoogle Scholar
  23. Keel, C., Wirthner, P., Oberhänshi, T., Voisard, C., Burger, U., Haas, D., and Défago, G., 1990, Pseudomonas as antagonists of plant pathogens in the rhizosphere: Role of the antibiotic 2, 4-diacetylphloroglucinol in the suppression of black root rot of tobacco, Symbiosis, 9: 327.Google Scholar
  24. Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N., 1980, Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria, Nature, 286: 885.CrossRefGoogle Scholar
  25. Kroon, B. A. M., Scheffer, R. J., and Elgersma, D. M., 1991, Resistance in tomato plants against Fusarium wilt induced by Fusarium oxysporum f. sp. dianthi, pages 306–310, in: “Biotic Interactions and Soilborne Diseases”, A. B. R. Beemster, G. J. Bollen, M. Gerlagh, M. A. Ruissen, B. Schippers, and A. Tempel, eds., Elsevier, Amsterdam.Google Scholar
  26. Lamers, J. G., Schippers, B., and Geels, F. P., 1988, Soilborne diseases of wheat in the Netherlands and results of seed bacterization with pseudomonads against Gaeumannomyces graminis var. tritici, pages 134-139, in: “General Breeding Related to Integrated Cereal Production”, M. L. Jorna, and L. A. J. Slootmaker, eds., Pudoc, Wageningen.Google Scholar
  27. Leeman, M., Scheffers, R. J., Van Pelt, J. A., Bakker, P. A. H. M., and Schippers, B., 1991, Control of Fusarium wilt of radish by Pseudomonas fluorescens WCS374, in greenhouse trials, in: “Plant Growth-Promoting Rhizobacteria, Progress and Prospect”, C. Keel, B. Knoller, and G. Défago, eds., International Organization of Biological Control (IOBC), (in press).Google Scholar
  28. Lemanceau, P., 1989, Role of competition for carbon and iron in mechanisms of soil suppressiveness to Fusarium wilts, pages 385–396, in: “Vascular Wilt Diseases of Plants”, E. C. Tjamos, and C. H. Beckman, eds., Springer-Verlag, Berlin, Heidelberg.Google Scholar
  29. Lemanceau, P., and Alabouvette, C., 1991, Biological control of fusarium diseases by fluorescent Pseudomonas and nonpathogenic Fusarium, Crop Prot., 10: (in press).Google Scholar
  30. Lemanceau, P., Samson, R., and Alabouvette, C., 1988, Recherches sur la resistance des sols aux maladies. XV Comparison des populations de Pseudomonas fluorescens dans un sol resistance et un sol sensible aux fusarioses vasculaires, Agronomie, 8: 243.Google Scholar
  31. Lockwood, J. L., 1990, Relation of energy stress to behaviour of soilborne plant pathogens and to disease developemnt, pages 197–214, in: “Biological Control of Soilborne Plant Pathogens”, D. Hornby, ed., C.A.B. International, Wellington.Google Scholar
  32. Van Loon, L. C., 1989, Stress proteins in infected plants, pages 198–237, in: “Plant - Microbe Interactions: Molecular and Genetic Perspectives” Vol. 3, T. Kosughi, and E. W. Nester, eds., McGraw-Hill, N.Y.Google Scholar
  33. Loper, J. E., 1988, Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain, Phytopathology, 78: 166.CrossRefGoogle Scholar
  34. Malajczuk, N., 1979, Biocontrol of Phytophtora cinnamomi in eucalypts and avocados in Australia, pages 635–652, in: “Soilborne Plant Pathogens”, B. Schippers, and W. Gams, eds., Academic Press, London, New York.Google Scholar
  35. Marugg, J. D., Van Spanje, M., Hoekstra, W. P. M., Schippers, B., and Weisbeek, P. J., 1985, Isolation and analysis of genes involved in siderophore biosynthesis in plant growth stimulating Pseudomonas putida WCS358, J. Bacter., 164: 563.Google Scholar
  36. Niemann, G. J., and Baayen, R. P., 1989, Inhibitory effects of phenylserine and salicylic acid on phytoalexin accumulation in carnation infr ted by Fusarium oxysporum f. sp. dianthi, Med. Fac. Landbouw Rijksuniv. Gent, 54/2a: 435.Google Scholar
  37. Park, C. S., Paulitz, T. C., and Baker, R., 1988, Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum, Phytopathology, 78: 199.CrossRefGoogle Scholar
  38. Van Peer, R., 1991, Phytoalexin production after bacterization of roots with Pseudomonas and root infection of carnation with Fusarium oxysporum f. sp. dianthi, Neth. J. Kant. Pathol.,97: (in press).Google Scholar
  39. Van Peer, R., Van Kuik, A. J., Ratting, H., and Schippers, B., 1990a, Protection of carnation against Fusarium by Pseudomonas sp. strain WCS417r and Fe-EDDHA, Neth. J.Plant Pathbl., 95: 119.Google Scholar
  40. Van Peer, R., Punte, W. M. L., De Weger, L. A., and Schippers, B., 1990b, Characterization of root surface and endorhizosphere pseudomonas in relation to their colonization of roots, Appl. Environm. Microbiol., 56: 2462.Google Scholar
  41. Van Peer, R., Niemann, G. N., and Schippers, B., 1991, Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt in carantion by Pseudomonas sp. strain WCS417r, Phytopathology, (in press).Google Scholar
  42. Van Peer, R., and Schippers, B., 1991, Biocontrol of Fusarium wilt by Pseudomonas sp. strain WCS417r: Induced resistance and phytoalexin accumulation, pages, 274–280, in: “Biotic Interactions and Soilborne Diseases”, A. B. R. Beemster, G. J. Bollen, M. Gerlagh, M. A. Ruissen, B. Schippers, and A. Tempel, eds., Elsevier, Amsterdam.Google Scholar
  43. Scher, F. M., and Baker, R., 1982, Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology, 72: 1567.CrossRefGoogle Scholar
  44. Schippers, B., 1988, Biological control of pathogens with rhizobacteria, Phil. Trans. R. Soc. Lond., B318: 238.Google Scholar
  45. Schippers, B., Bakker, A. W., and Bakker, P. A. H. M., 1987, Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practises, Annu. Rev. Phytopath., 25: 339.Google Scholar
  46. Schippers, B., Bakker, A. W., Bakker, P. A. H. M., and Van Peer, R., 1991, Beneficial and deleterious effects of HCN-producing pseudomonas on rhizosphere interactions, pages 211–219, in: “The Rhizosphere and Plant Growth”, D. L. Keister, and P. B. Gregan, eds., Kluwer Acad. Publ., The Netherlands.Google Scholar
  47. Schippers, B., Bakker, P. A. H. M., Salentijn, E., and Hoekstra, W. P. M., 1990, Antimicrobial metabolite production: a competitive advantage to a manipulated soil microorganism, in: “Risk Assesment in Agricultural Biotechnology: Proceedings of the International Conference, Univ. of California, Davis, J. J. Marois, and G. Bruening, eds., Univ. of California, Oakland.Google Scholar
  48. Smith, S. N., and Snyder, W. C., 1971, Relationship of inoculum density and soil types to severity of Fusarium wilt of sweet potato, Phytopathology, 61: 1049.CrossRefGoogle Scholar
  49. Stutz, E. W., Défago, G., and Kern, H., 1986, Naturally occuring fluorescent pseudomonads involved in suppression of black root rot of tobacco, Phytopathology, 76: 181.CrossRefGoogle Scholar
  50. Thomashow, L. S., and Weller, D. M., 1990, Application of fluorescent pseudomonads to control root diseases of wheat and some mechanisms of disease suppression, pages 109–122, in: “Biological Control of Soilborne Plant pathogens”, D. Hornby, ed., C.A.B. International, Wellingford.Google Scholar
  51. Voisard, C., Keel, C., Haas, D., and Défago, G., 1989, Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions, EMBO Journal, 8: 351.PubMedGoogle Scholar
  52. Weller, D. M., 1988, Biological control of soilborne plant pathogens in the rhizosphere with bacteria, Annu. Rev. Phytopath., 26: 379.Google Scholar
  53. Weller, D. M., and Cook, R. J., 1986, Increased growth of wheat by seed treatments with fluorescent pseudomonads and implications of Pythium control, Can. J. Pl. Path., 8: 328.Google Scholar
  54. Weller, D. M., Howie, W. J., and Cook, R. J., 1988, Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all by fluorescent pseudomonads, Phytopathology, 78: 1094CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Bob Schippers
    • 1
  1. 1.Department of Plant Ecology and Evolutionary Biology Section of Plant PathologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations