Modes of Action of Mycoparasites in Relation to Biocontrol of Soilborne Plant Pathogens

  • J. W. Deacon
  • L. A. Berry
Part of the NATO ASI Series book series (NSSA, volume 230)


Mycoparasites have much potential for biocontrol of plant pathogens. They can be applied as commercially produced inoculants or, equally important, they can be exploited as natural regulators of pathogen populations by appropriate manipulation of crops or soils (Adams, 1990; Baker, 1987; Boogert et al., 1990; Fahima and Henis, 1990; Lumsden and Lewis, 1989). In either case it is important to understand their modes of action against target pathogens and the ecological factors that influence their activities. Several themes have begun to emerge from these studies, and they show parallels with events in other host-parasite interactions (Chet, 1987; Manocha and Chen, 1990). So this seems an appropriate time to assess the state of knowledge and draw attention to areas of neglect.


Rhizoctonia Solani Trichoderma Harzianum Pythium Species Hyphal Coiling SOILBORNE Plant Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, P. B., 1990, The potential of mycoparasites for biological control of plant diseases, Annu. Rev. Phytopathol., 28: 59.PubMedCrossRefGoogle Scholar
  2. Adams, P. B., and Ayers, W. A., 1983, Histological and physiological aspects of infection of sclerotia of Sclerotinia species by two mycoparasites, Phytopathology, 73: 1072.CrossRefGoogle Scholar
  3. Baker, R., 1987, Mycoparasitism: ecology and physiology, Can. J. Plant Pathol., 9: 370.Google Scholar
  4. Barak, R., and Chet, I., 1990, Lectin of Sclerotium rolfsii: its purification and possible function in fungal-fungal interaction, J. Appl. Bacterial., 69: 101.CrossRefGoogle Scholar
  5. Barak, R., Elad, Y., Mirelman, D., and Chet, I., 1985, Lectins: a possible basis for specific recognition in Trichoderma - Sclerotium rolfsii interaction, Phytopathology, 75: 458.CrossRefGoogle Scholar
  6. Boogert, P. H. J. van den, and Gams, W., 1988, Assessment of Verticillium biguttatum in agricultural soils, Soil Biol. Biochem., 20: 899.CrossRefGoogle Scholar
  7. Boogert, P. H. J. van den, Jager, G., and Velvis, H., 1990, Verticillium biguttatum, an important mycoparasite for the control of Rhizoctonia solani in potato, pages 77–91, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., CAB International, Wallingford.Google Scholar
  8. Cherif, M., and Benhamou, N., 1990, Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma sp. on Fusarium oxysporum f. sp. radicis-lycopersici, Phytopathology, 80: 1406.CrossRefGoogle Scholar
  9. Chet, I., 1987, Trichoderma-application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi, pages 137160, in: “Innovative Approaches to Plant Disease Control”, I. Chet, ed., Wiley, New York.Google Scholar
  10. Christias, C., and Lockwood, J. L., 1973, Conservation of mycelial nutrients in four sclerotium-forming fungi in nutrient-deprived conditions, Phytopathology, 63: 602.CrossRefGoogle Scholar
  11. Deacon, J. W., 1976, Studies on Pythium oligandrum, an aggressive parasite of other fungi, Trans. Br. Mycol. Soc., 66: 383.CrossRefGoogle Scholar
  12. Deacon, J. W., 1991, Significance of ecology in the development of biocontrol agents against soil-borne plant pathogens, Biocontrol Sci. Technol., (in press).Google Scholar
  13. Deacon, J. W., and Henry, C. M., 1978, Mycoparasitism by Pythium oligandrum and P. acanthicum, Soil Biol. Biochem., 10: 409.CrossRefGoogle Scholar
  14. Dennis, C. and Webster, J., 1971, Antagonistic properties of species-groups of Trichoderma. III. Hyphal interaction, Trans. Br. Mycol. Soc., 57: 41CrossRefGoogle Scholar
  15. Elad, Y., Barak, R., and Chet, I., 1983, Possible role of lectins in mycoparasitism, J. Bacteriol., 154: 1431.PubMedGoogle Scholar
  16. Elad, Y., Chet, I., and Henis, Y, 1982, Degradation of plant pathogenic fungi by Trichoderma harzianum, Can. J. Microbiol., 28: 719.CrossRefGoogle Scholar
  17. Elad, Y., Lifshitz, R., and Baker, R., 1985, Enzymatic activity of the mycoparasite Pythium nunn during interactions with host and non-host fungi, Physiol. Plant Pathol., 27: 131.CrossRefGoogle Scholar
  18. F.B.P.P., 1973, A Guide to the use of terms in plant pathology, Phytopathological Paper No. 17.Google Scholar
  19. Fahima, T., and Henis, Y., 1990, Interactions between pathogen, host and biocontrol agent: multiplication of Trichoderma hamatum and Talaromyces flavus on roots of diseased and healthy hosts, pages 165–180, in: “Biological Control of Soil-borne Plant Pathogens”, D. Hornby, ed., CAB International, Wallingford.Google Scholar
  20. Foley, M. F. and Deacon, J. W., 1985, Isolation of Pythium oligandrum and other necrotrophic mycoparasites from soil, Trans. Br. Mycol. Soc., 85: 631.CrossRefGoogle Scholar
  21. Foley, M. F., and Deacon, J. W., 1986a, Physiological differences between mycoparasitic and plant-pathogenic Pythium species, Trans. Br. Mycol. Soc., 86: 225.CrossRefGoogle Scholar
  22. Foley, M. F., and Deacon, J. W., 1986b, Susceptibility of Pythium spp. and other fungi to antagonism by the mycoparasite Pythium oligandrum, Soil Biol. Biochem., 18: 91.CrossRefGoogle Scholar
  23. Gooday, G. W., 1983, The hyphal tip, pages 315–356, in: “Fungal Differentiation, a Contemporary Synthesis”, J. E. Smith, ed., Dekker, New York.Google Scholar
  24. Hoch, H. C., and Fuller, M. F., 1977, Mycoparasitic relationships. I. Morphological features of interaction between Pythium acanthicum and several fungal hosts, Arch. Microbiol., 111: 207.CrossRefGoogle Scholar
  25. Howell, C. R., 1987, Relevance of mycoparasitism in the biological control of Rhizoctonia solani by Gliocladium virens, Phytopathology, 77: 992.CrossRefGoogle Scholar
  26. Huang, H. C., 1978, Gliocladium catenulatum: hyperparasite of Sclerotinia sclerotiorum and Fusarium species, Can. J. Bot., 56: 2243.Google Scholar
  27. Ikediugwu, F. E. 0., and Webster, J., 1970, Antagonism between Coprinus heptemerus and other coprophilous fungi, Trans. Br. Mycol. Soc., 54: 181CrossRefGoogle Scholar
  28. Jeffries, P., 1987, Pathways for the exchange of materials in mycoparasitic and plant-fungal interactions, pages 60–78, in: “Fungal Infection of Plants”, G. F. Pegg,and P. J. Ayres, eds., Cambridge University Press, Cambridge.Google Scholar
  29. Ko, W. and Lockwood, J. L., 1970, Mechanism of lysis of fungal mycelia in soil, Phytopathology, 60: 148.CrossRefGoogle Scholar
  30. Laing, S. A. K., and Deacon, J. W., 1990, Aggressiveness and fungal host ranges of mycoparasitic Pythium species, Soil Biol. Biochem., 22: 905.CrossRefGoogle Scholar
  31. Laing, S. A. K., and Deacon, J. W., 1991, Video microscopical comparison of mycoparasitism by Pythium oligandrum, P. nunn and an unnamed Pythium species, Mycol. Res., 95: 469.Google Scholar
  32. Lewis, K., Whipps, J. M., and Cooke, R. C., 1989, Mechanisms of biological disease control with special reference to the case study of Pythium oligandrum as an antagonist, pages 190–217, in: “Biotechnology of Fungi for Improving Plant Growth”, J. M. Whipps,and R. D. Lumsden, eds., Cambridge University Press, Cambridge.Google Scholar
  33. Lifshitz, R., Dupler, M., Elad, Y., and Baker, R., 1984, Hyphal interactions between a mycoparasite, Pythium nunn, and several soil fungi, Can. J. Microbiol., 30: 1482.CrossRefGoogle Scholar
  34. Lindow, S. E., 1986, Strategies and practice of biological control of ice nucleation-active bacteria on plants, pages 293–311, in: “Microbiology of the Phyllosphere”, N. J. Fokkema,and J. Van Heuvel, eds., Cambridge University Press, Cambridge.Google Scholar
  35. Lodha, B. C. and Webster, J., 1990, Pythium acanthophoron, a mycoparasite rediscovered in India and Britain, Mycol. Res., 94: 1006.CrossRefGoogle Scholar
  36. Lumsden, R. D., and Lewis, J. A., 1989, Selection, production, formulation and commercial use of plant disease biocontrol fungi: problems and progress, pages 171–190, in: “Biotechnology of Fungi for ImprovingGoogle Scholar
  37. Plant Growth“, J. M. Whipps and R. D. Lumsden, eds., Cambridge University Press, Cambridge.Google Scholar
  38. McQuilken, M. P., Whipps, J. M., and Cooke, R. C., 1990, Control of damping-off in cress and sugar-beet by commercial seed-coating with Pythium oligandrum, Plant Pathol., 39: 452.CrossRefGoogle Scholar
  39. Manocha, M. S., and Chen, Y.., 1990, Specificity of attachment of fungal parasites to their hosts, Can. J. Microbiol., 36: 69.CrossRefGoogle Scholar
  40. Manocha, M. S., Chen, Y., and Rao, N., 1990, Involvement of cell surface sugars in recognition, attachment, and appressorium formation by a mycoparasite, Can. J. Microbiol., 36: 771.PubMedCrossRefGoogle Scholar
  41. Martin, F. N., and Hancock, J. G., 1986, Association of chemical and biological factors in soil suppressive to Pythium ultimum, Phytopathology, 76: 1221.CrossRefGoogle Scholar
  42. Martin, F. N., and Hancock, J. G., 1987, The use of Pythium oligandrum for biological control of preemergence damping-off caused by P. ultimum, Phytopathology, 77: 1013.CrossRefGoogle Scholar
  43. Mitchell, R. T., and Deacon, J. W., 1986, Chemotropism of germ-tubes from zoospore cysts of Pythium spp., Trans. Br. Mycol. Soc., 86: 233.CrossRefGoogle Scholar
  44. Nelson, E. B., Chao, W. L., Norton, J. M., Nash, G. T., and Harman, G. E., 1986, Attachment of Enterobacter cloacae to Pythium ultimum hyphae: possible role in the biological control of Pythium preemergence damping-off, Phytopathology, 76: 327.CrossRefGoogle Scholar
  45. Pachenari, A., and Dix, N. J., 1980, Production of toxins and wall degrading enzymes by Gliocladium roseum, Trans. Br. Mycol. Soc., 74: 561.CrossRefGoogle Scholar
  46. Papavizas, G. C., 1985, Trichoderma and Gliocladium: biology, ecology and potential for biocontrol, Annu. Rev. Phytopathol., 23: 23.CrossRefGoogle Scholar
  47. Paulitz, T. C., and Baker, R., 1987, Biological control of pythium damping-off of cucumbers with Pythium nunn: influence of soil environment and organic amendments, Phytopathology, 77: 341.CrossRefGoogle Scholar
  48. Paulitz, T. C., and Baker, R., 1988, Interactions between Pythium nunn and Pythium ultimum on bean leaves, Can. J. Microbiol., 34: 947.CrossRefGoogle Scholar
  49. Rosenberger, R. F., 1979 Endogenous lytic enzymes and wall metabolism, pages 265–277, in: “Fungal Walls and Hyphal Growth”, J. H. Burnett, and A. P. J. Trinci, eds., Cambridge University Press, Cambridge.Google Scholar
  50. Seviour, R. J., Kristiansen, B., and Harvey, L., 1984, Morphology of Aureobasidium pullulans during polysaccharide elaboration, Trans. Br. Mycol. Soc., 82: 350.CrossRefGoogle Scholar
  51. Sivan, A., and Chet, I., 1989, The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization, Phytopathology, 79: 198.CrossRefGoogle Scholar
  52. Skidmore, A. M., and Dickinson, C. H., 1976, Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi, Trans. Br. Mycol. Soc., 66: 57.CrossRefGoogle Scholar
  53. Vesely, D., 1977, Potential biological control of damping-off pathogens in emerging sugar beet by Pythium oligandrum Drechsler., Phytopathol. Z., 90: 113.CrossRefGoogle Scholar
  54. Walker, J. A., and Maude, R. B., 1975, Natural occurrence and growth of Gliocladium roseum on the mycelium and sclerotia of Botrytis allia, Trans. Br. Mycol. Soc., 65: 335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. W. Deacon
    • 1
  • L. A. Berry
    • 1
  1. 1.Institute of Cell and Molecular BiologyUniversity of EdinburghEdinburghUK

Personalised recommendations