Advertisement

The Metals of Cytochrome C Oxidase and their Role in the Kinetics of Electron Transfer and Proton Pumping

  • Francesco Malatesta
  • Giovanni Antonini
  • Paolo Sarti
  • Maurizio Brunori
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 51)

Abstract

Cytochrome c oxidase (ferrocytochrome c:02 oxidoreductase, EC 1.9.3.1) is a complex oligomeric metalloprotein incorporated in the mitochondrial inner membrane of eukaryotic cells or in the plasma membrane of bacteria [1,2,3]. This enzyme catalyses the transfer of electrons between two substrates, namely ferrocytochrome c and molecular oxygen. Part of the redox energy involved in this reaction is used by the enzyme to transfer protons from the matrix aqueous space to the intermembrane space of mitochondria [4]. Thus, cytochrome c oxidase is a redox-linked proton pump, which couples redox energy to the endoergonic vectorial transport of protons in line with the chemiosmotic theory.

Keywords

Cytochrome Oxidase Prosthetic Group Beef Heart Electron Transfer Pathway Ascorbic Acid Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Brunori, G. Antonini, F. Malatesta, P. Sarti and M.T. Wilson, Adv. Inorg. Biochem., 7, 93, (1987).Google Scholar
  2. [2]
    See Volume 23 of J. Inorg. Biochem., (1985).Google Scholar
  3. [3]
    M.K.F. Wikstrom, K. Krab and M. Saraste, in Cytochrome Oxidase. A Synthesis, Academic Press, New York (1981).Google Scholar
  4. [4]
    M.K.F. Wikstrom, Nature (London), 266, 271 (1977).CrossRefGoogle Scholar
  5. [5]
    B. Ludwig and G. Schatz, Proc. Natl. Acad. Sci. USA, 77, 196 (1980).CrossRefGoogle Scholar
  6. [6]
    B. Ludwig, Biochim. Biophys. Acta, 594, 177 (1980).CrossRefGoogle Scholar
  7. [7]
    G.C.M. Steffens, G. Buse, W.A. Oppliger and B. Ludwig, Biochem. Biophys. Res. Commun., 116, 335 (1983).CrossRefGoogle Scholar
  8. [8]
    G.C.M. Steffens, R. Biewald and G. Buse, Eur. J. Biochem., 164, 295 (1987).CrossRefGoogle Scholar
  9. [9]
    O. Warburg, Biochem. Z., 152, 479 (1924).Google Scholar
  10. [10]
    O. Einarsdottir and W.S. Caughey, Biochem. Biophys. Res. Commun., 124, 836 (1984).CrossRefGoogle Scholar
  11. [11]
    O. Einarsdottir and W.S. Caughey, Biochem. Biophys. Res. Commun., 129, 840 (1984).CrossRefGoogle Scholar
  12. [12]
    R.F. Van Gelder and H. Beinert, Biochim. Biophys. Acta, 189, 1, (1969).CrossRefGoogle Scholar
  13. [13]
    C.R. Hartzell and H. Beinert, Biochim. Biophys. Acta, 368, 318 (1974).CrossRefGoogle Scholar
  14. [14]
    T. Yonetani, Biochem. Biophys. Res. Commun., 3, 549 (1960).CrossRefGoogle Scholar
  15. [15]
    R. Aasa, S.P.J. Albracht, K.E. Falk, B. Lanne and T. Vanngard, Biochim. Biophys. Acta, 422, 260 (1976).CrossRefGoogle Scholar
  16. [16]
    D. Keilin and E.F. Hartree, Proc. R. Soc. London, Ser. B 127, 167, (1939).CrossRefGoogle Scholar
  17. [17]
    T. Yonetani, J. Biol. Chem., 235, 845 (1960).Google Scholar
  18. [18]
    S. Horie and M. Morrison, J. Biol. Chem., 238, 2859 (1963).Google Scholar
  19. [19]
    W.A. Vanneste, Biochemistry, 5, 838 (1966).CrossRefGoogle Scholar
  20. [20]
    D.F. Blair, D.F. Bocian, G.T. Babcock and S.I. Chan, Biochemistry, 21, 6928 (1982).CrossRefGoogle Scholar
  21. [21]
    C.R. Hartzell, R.E. Hansen and H. Beinert, Proc. Natl. Acad. Sci. USA, 70, 2477 (1973).CrossRefGoogle Scholar
  22. [22]
    D.E. Griffiths and D.C Wharton, J. Biol. Chem., 236, 1857 (1961).Google Scholar
  23. [23]
    D.C. Wharton and A. Tzagoloff, J. Biol. Chem., 239, 2036 (1964).Google Scholar
  24. [24]
    H. Beinert, C.R. Hartzell and W.H. Orme-Johnson, in Probes of Structure and Function of Macromolecules and Membranes, B. Chance, T. Yonetani, A.S. Mildran (Editors), Academic Press, New York (1971), Vol. 2, pp. 575–592.Google Scholar
  25. [25]
    R.A. Malkin and B.G. Malmstrom, Adv. Enzymol., 33, 177 (1970).Google Scholar
  26. [26]
    G.C.M. Steffens and G. Buse, Hoppe Seyler’s Z. Physiol. Chem., 360, 613 (1979).Google Scholar
  27. [27]
    S.I. Chan, D.F. Bocian, G.W. Brudwig, R.H. Morse and T.H. Stevens, in Cytochrome Oxidase, T.E. King, Y. Orii, B. Chance and K. Okunuki, (Editors), Elsevier North-Holland Biomedical Press, Amsterdam, (1979) pp. 177–188.Google Scholar
  28. [28]
    T.H. Stevens, C.T. Martin, H. Wang, G.W. Brudvig, C.P. Scholes and S.I.Google Scholar
  29. [29]
    C.T. Martin, C.P. Scholes and S.I. Chan, J. Biol. Chem., 263, 8240 (1988).Google Scholar
  30. [30]
    V.W. Hu, S.I. Chan and G.S. Brown, FEBS Lett., 84. 287 (1977).CrossRefGoogle Scholar
  31. [31]
    R.A. Scott, S.P. Cramer, R.W. Shaw, H. Beinert and H.B. Gray, Proc. Natl. Acad. Sci. USA, 78, 664, (1981).CrossRefGoogle Scholar
  32. [32]
    J. Peisach and W.E. BlumbergArch. Biochem. Biophys., 165, 691 (1974).CrossRefGoogle Scholar
  33. [33]
    C. Greenwood, B.C. Hill, D. Barber, D.G. Eglinton and A.J. Thomson, Biochem. J., 215, 303 (1983).Google Scholar
  34. [34]
    B.M. Hoffman, J.E. Roberts, M. Swansson, S.H. Speck and E. Margoliash, Proc. Natl. Acad. Sci. USA, 77, 1452 (1980).CrossRefGoogle Scholar
  35. [35]
    G.T. Babcock, P.M. Callahan, M.R. Ondrias and I. Salmeen, Biochemistry, 20 959 (1981).CrossRefGoogle Scholar
  36. [36]
    G.T. Babcock, J. Van Steelan, G. Palmer, L.E. Vickery and I. Salmeen, in Cytochrome Oxidase, (T.E. King, Y. Orii, B. Chance, K. Okunuki (Editors), Elsevier North-Holland Biomedical Press, Amsterdam (1979), pp. 105–115.Google Scholar
  37. [37]
    K. Carter and G. Palmer, J. Biol. Chem., 257, 13507 (1982).Google Scholar
  38. [38]
    D.G. Eglinton, M.K. Johnson, A.J. Thomson, P.E. Gooding and C. Greenwood, Biochem. J., 191, 319 (1980).Google Scholar
  39. [39]
    L. Bonen, P.H. Boer and M.W. Gray, EMBO J.3, 2531 (1984).Google Scholar
  40. [40]
    M.K.F. Wikstrom, M. Saraste and I. Penttila, in The Enzymes of Biological Membranes, A.N. Martonosi (Editor), Plenum Publishing Corp., New York (1985), Vol. 4, pp. 111–148.CrossRefGoogle Scholar
  41. [41]
    L. Holm, M. Saraste and M.K.F. Wikstrom, EMBO J., 6, 2819 (1987).Google Scholar
  42. [42]
    K.E. Falk, T. Vanngard and J. Angstrom, FEBS Lett., 75, 23 (1977).CrossRefGoogle Scholar
  43. [43]
    M.F. Tweedle, L.J. Wilson, L. Garcia-Iniques, G.T. Babcock and G. Palmer, J. Biol. Chem., 253, 8065 (1978).Google Scholar
  44. [44]
    A.J. Thomson, T. Brittain, C. Greenwood and J.P. Springall, Biochem J., 165, 327 (1977).Google Scholar
  45. [45]
    C.H.A. Seiter and S.G. Angelos, Proc. Natl. Acad. Sci. USA, 77, 1806 (1980).CrossRefGoogle Scholar
  46. [46]
    P. Nicholls and B.A. Chanady, Biochim. Biophys. Acta, 634, 256 (1981).CrossRefGoogle Scholar
  47. [47]
    D. Bickar, C. Bonaventura and J. Bonaventura, J. Biol. Chem., 259, 10777 (1984).Google Scholar
  48. [48]
    D.F. Blair, S.N. Witt and S.I. Chan, J. Am. Chem. Soc., 107, 7389 (1985).CrossRefGoogle Scholar
  49. [49]
    T.A. Kent, L.J. Young, G. Palmer, J.A. Fee and E. Munck, J. Biol. Chem., 258, 8543 (1983).Google Scholar
  50. [50]
    T.H. Stevens, G.W. Brudvig, D.F. Bocian and S.I. Chan, Proc. Natl. Acad. Sci. USA, 76, 3320 (1979).CrossRefGoogle Scholar
  51. [51]
    L. Powers, B. Chance, Y. Ching and P. Angiolillo, Biophys. J., 34, 465 (1981).CrossRefGoogle Scholar
  52. [52]
    R.A. Scott, P.M. Li and S.I. Chan, Ann. New York Acad. Sci., 550, 53 (1988).CrossRefGoogle Scholar
  53. [53]
    B. Reinhammar, R. Malkin, P. Jensen, B. Karlsson, L. Andreasson, R. Aasa, T. Vanngard and B.G. Malmstrom, J. Biol. Chem., 255, 5000 (1980).Google Scholar
  54. [54]
    B. Karlsson, R. Aasa, T. Vanngard and B.G. Malmstrom, FEBS Lett., 131, 186, (1981).CrossRefGoogle Scholar
  55. [55]
    S.N. Witt, D.F. Blair and S.I. Chan, J. Biol. Chem., 261, 8104 (1986).Google Scholar
  56. [56]
    M.F.T. Blokzijl-Homan and B.F. Van Gelder, Biochim. Biophys. Acta, 234, 493 (1971).CrossRefGoogle Scholar
  57. [57]
    T.H. Stevens, D.F. Bocian and S.I. Chan, FEBS Lett., 97, 314 (1979).CrossRefGoogle Scholar
  58. [58]
    T.H. Stevens and S.I. Chan, J. Biol. Chem., 256, 1069 (1981).Google Scholar
  59. [59]
    J. Cline, B. Reinhammar, P. Jensen, R. Venters and B.M. Hoffman, J. Biol. Chem., 258, 5124 (1983).Google Scholar
  60. [60]
    B.V. Shaw, R.E. Hansen and H. Beinert, J. Biol. Chem., 253, 6637 (1978).Google Scholar
  61. [61]
    E. Antonini, M. Brunori, A. Colosimo, C. Greenwood and M.T. Wilson, Proc. Natl. Acad. Sci. USA, 74, 3128 (1977).CrossRefGoogle Scholar
  62. [62]
    B.V. Shaw, R.E. Hansen and H. Beinert, Biochim. Biophys. Acta, 548, 386 (1979).CrossRefGoogle Scholar
  63. [63]
    A. Naqui, L. Powers, M. Lundeen and B. Chance, Biophys. J., 51, 312 (1987).Google Scholar
  64. [64]
    Q.H. Gibson, C. Greenwood, D.C. Wharton and G. Palmer, J. Biol. Chem., 240, 888 (1965).Google Scholar
  65. [65]
    M.T. Wilson, C. Greenwood, M. Brunori and E. Antonini, Biochem. J., 147, 145 (1975).Google Scholar
  66. [66]
    L.E. Andreasson, B.G. Malmstrom, C. Stromberg and T. Vanngard, FEBS Lett., 28, 297 (1972).CrossRefGoogle Scholar
  67. [67]
    M. Brunori, C. Colosimo, G. Rainoni, M.T. Wilson and E. Antonini, J. Biol. Chem., 254, 10769 (1979).Google Scholar
  68. [68]
    K.J.H. Van Buuren, B.F. Van Gelder, J. Wilting and R. Braams, Biochim. Biophys. Acta, 333, 421 (1974).CrossRefGoogle Scholar
  69. [69]
    C. Greenwood, T. Brittain, M.T. Wilson and M. Brunori, Biochem. J., 157, 591 (1976).Google Scholar
  70. [70]
    L.G. Petersen and L.E. Andreasson, FEBS Lett., 66, 52 (1976).CrossRefGoogle Scholar
  71. [71]
    J. Gelles and S.I. Chan, Biochemistry, 24, 3963 (1985).CrossRefGoogle Scholar
  72. [72]
    R.A. Scott and H.B. Gray, J. Am. Chem. Soc., 102, 3219 (1980).CrossRefGoogle Scholar
  73. [73]
    G.D. Jones, M.G. Jones, M.T. Wilson, M. Brunori, A. Colosimo and P. Sarti, Biochem. J., 209, 175 (1983).Google Scholar
  74. [74]
    F.G. Halaka, Z.K. Barnes, G.T. Babcock and J.L. Dye, Biochemistry, 23, 2005 (1984).CrossRefGoogle Scholar
  75. [75]
    M. Brunori, D. Bickar, J. Bonaventura and C. Bonaventura, J. Biol. Chem., 260, 7165 (1985).Google Scholar
  76. [76]
    G. Antonini, M. Brunori, A. Colosimo, F. Malatesta and P. Sarti, J. Inorg. Biochem., 23, 289 (1985).CrossRefGoogle Scholar
  77. [77]
    Q.H. Gibson and C. Greenwood, Biochem. J., 86, 51 (1963).Google Scholar
  78. [78]
    Q.H. Gibson and C. Greenwood, J. Biol. chem.240, 2694 (1965).Google Scholar
  79. [79]
    C. Greenwood and Q.H. Gibson, J. Biol. Chem., 242, 1782 (1967).Google Scholar
  80. [80]
    J.K.V. Reichardt and Q.H. Gibson, J. Biol. Chem., 257, 9268 (1982).Google Scholar
  81. [81]
    M. Brunori and Q.H Gibson, EMBO J., 2, 2025 (1983).Google Scholar
  82. [82]
    B.C. Hill and C. Greenwood, Biochem. J., 218, 913 (1984).Google Scholar
  83. [83]
    Y. Orii, J. Biol. Chem., 259, 7187 (1984).Google Scholar
  84. [84]
    B. Chance, C. Saronio and J.S. Leigh, Proc. Natl. Acad. Sci. USA, 72, 1635 (1975).CrossRefGoogle Scholar
  85. [85]
    B. Chance, C. Saronio and J. S. Leigh, J. Biol. Chem., 250, 9226 (1975).Google Scholar
  86. [86]
    G.M. Clore, L.E. Andreasson, B. Karlsson, R. Aasa and B.G. Malmstrom, Biochem. J., 185, 139 (1980).Google Scholar
  87. [87]
    G.M. Clore, L.E. Andreasson, B. Karlsson, R. Aasa and B.G. Malmstrom, Biochem. J., 185, 155 (1980).Google Scholar
  88. [88]
    F. Malatesta, G. Antonini, P. Sarti, B. Vallone and M. Brunori, Ann. New York Acad. Sci., 550, 269 (1988).CrossRefGoogle Scholar
  89. [89]
    M. Brunori, G. Antonini, F. Malatesta, P. Sarti and M.T. Wilson, Eur. J. Biochem., 169, 1, (1987).CrossRefGoogle Scholar
  90. [90]
    K. Krab and M.K.F. Wikstrom, Biochim. Biophys. Acta, 504, 200 (1978).CrossRefGoogle Scholar
  91. [91]
    R.P. Casy, J. B. Chappel and A. Azzi, Biochem. J., 182, 149 (1979).Google Scholar
  92. [92]
    E. Sigel and E. Carafoli, Eur. J. Biochem., 111, 299 (1980).CrossRefGoogle Scholar
  93. [93]
    P. Sarti, M.G. Jones, A. Antonini, F. Malatesta, A. Colosimo, M.T. Wilson and M. Brunori, Proc. Natl. Acad. Sci. USA, 82, 4876 (1985).CrossRefGoogle Scholar
  94. [94]
    R.P. Casey, P.S. O’Shea, J.B. Chappel and A. Azzi, Biochim. Biophys. Acta, 765, 30 (1984).CrossRefGoogle Scholar
  95. [95]
    M. Brunori, P. Sarti, A. Colosimo, G. Antonini, F. Malatesta, M.G. Jones and M.T. Wilson, EMBO J., 4, 2365 (1985).Google Scholar
  96. [96]
    D. Pietrobon, G.F. Azzone and D. Walz, Eur. J. Biochem., 117, 389 (1981).CrossRefGoogle Scholar
  97. [97]
    D. Walz, in Biological Structure and Coupled Flows, A. Optalaka and M. Balaban (Editors), Academic Press, New York (1983), pp. 45–60.Google Scholar
  98. [98]
    M.P. Murphy and M.D. Brand, Eur. J. Biochem., 173, 637 (1988).CrossRefGoogle Scholar
  99. [99]
    M.K.F. Wikstrom and R.P. Casey, J. Inorg. Biochem., 23, 327 (1985).CrossRefGoogle Scholar
  100. [100]
    P.M. Callahan and G.T. Babcock, Biochemistry, 22, 452 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Francesco Malatesta
    • 1
  • Giovanni Antonini
    • 1
  • Paolo Sarti
    • 2
  • Maurizio Brunori
    • 3
  1. 1.Department of Experimental Medicine and Biochemical SciencesUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Department of Biomedical Technologies and BiometryUniversity of L’AquilaL’AquilaItaly
  3. 3.Department of Biochemical Sciences and CNR Center of Molecular BiologyUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations