Molecular Aspects of the Neurotransmission by the Acetylcholine Receptor System

  • Eberhard Neumann
Part of the Ettore Majorana International Science Series book series (EMISS, volume 51)


The nicotinic acetylcholine receptor (AcChR) is the key protein in the rapid signal transmission between cholinergic nerves and the innervated target cells of vertebrate muscles and of the electric organs of many electric fishes [1,2]. The trans-synaptic signal transfer (see Fig. 1), finally resulting in muscle contraction or in electric organ discharge, is initiated by the neuronally triggered release of the neurotransmitter acetylcholine (AcCh). According to the historical concept by Nachmanson [1] this cationic activator molecule binds to the AcCh receptor and causes a conformational change. Thereby a pathway (channel) for the flow of Na+ and K+ ions is opened that causes depolarisation of the postsynaptic membrane. Rapid depolarisation, in turn, triggers the action potentials that are necessary for the muscle cell contraction or the discharge of the electric organ electrocytes.


Electric Organ Electric Organ Discharge Membrane Fragment Dialysis Mode Planar Lipid Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Nachmansohn, Harvey Lect., 49, 57 (1955).Google Scholar
  2. [2]
    J.P. Changeux, J. Giraudat and M. Dennis, TIPS, 8, 459 (1987).Google Scholar
  3. [3]
    J. Cartaud, in Ontogenesis and Functional Mechanisms of Peripheral Synapses, J. Taxi (Editor) Elsevier, New York, (1980) pp. 199–210.Google Scholar
  4. [4]
    H.W. Chang, E. Bock and E. Neumann, Biochemistry, 23, 4546 (1984).CrossRefGoogle Scholar
  5. [5]
    E. Neumann, E. Boldt, B. Rauer, H. Wolf and H.W. Chang, Bioelectrochem. Bioenerg., 20, 45 (1988).CrossRefGoogle Scholar
  6. [6]
    R. Kiehl, M. Varsányi and E. Neumann, Biochem. Biophys. Res. Commun., 147, 1251 (1987).CrossRefGoogle Scholar
  7. [7]
    H.W. Chang and E. Bock, Biochemistry, 16, 4513 (1977).CrossRefGoogle Scholar
  8. [8]
    S.L. Hamilton, M. McLaughlin and A. Karlin, Biochem. Biophys. Res. Commun., 79, 692 (1977).CrossRefGoogle Scholar
  9. [9]
    J.P. Changeux, A. Devillers-Thiéry and P. Chemouilli, Science, 225, 1335 (1984).CrossRefGoogle Scholar
  10. [10]
    C. Toyoshima and N. Unwin, Nature (London), 336, 247 (1988).CrossRefGoogle Scholar
  11. [11]
    H. Schindler, F. Spillecke and E. Neumann, Proc. Natl. Acad. Sci. USA, 81, 6222 (1984).CrossRefGoogle Scholar
  12. [12]
    F. Spillecke, Thesis, University of Konstanz, Martinsried, G.F.R. (1984).Google Scholar
  13. [13]
    V. Volz, Diploma thesis, University of Bielefeld, G.F.R. (1987).Google Scholar
  14. [14]
    R. Rüchel, D. Waiters and A. Maelicke, Eur. J. Biochem., 119, 215 (1981).CrossRefGoogle Scholar
  15. [15]
    H. Schindler and U. Quast, Proc. Natl. Acad. Sci. USA, 77, 3052 (1980).CrossRefGoogle Scholar
  16. [16]
    A. Karlin and E. Bartels, Biochim. Biophys. Acta, 126, 525 (1966).CrossRefGoogle Scholar
  17. [17]
    J.W. Walker, R.J. Lukas and M.G. McNamee, Biochemistry, 20, 2191 (1981).CrossRefGoogle Scholar
  18. [18]
    T. Schürholz, J. Weber and E. Neumann, Bioelectrochem. Bioenerg., 21, 71 (1989).CrossRefGoogle Scholar
  19. [19]
    O.P. Hamil and B. Sakmann, Nature (London), 294, 462 (1981).CrossRefGoogle Scholar
  20. [20]
    B. Sakmann, J. Patlak and E. Neher, Nature (London), 286, 71 (1980).CrossRefGoogle Scholar
  21. [21]
    I. Silman and A. Karlin, Science, 164, 1420 (1969).CrossRefGoogle Scholar
  22. [22]
    R.N. Cox, M. Kawai, A. Karlin and P.W. Brandt, J. Membr. Biol., 51, 145 (1979).CrossRefGoogle Scholar
  23. [23]
    H.A. Lester, M.E. Krouse, M.M. Nass, N.H. Wassermann and B.F. Erlanger, J. Gen. Physiol., 75, 207 (1980).CrossRefGoogle Scholar
  24. [24]
    A. Maelicke, Angew. Chem., 96, 193 (1984).CrossRefGoogle Scholar
  25. [25]
    J.M. Wolosin, A. Lyddiatt, J.O. Dolly and E.A. Barnard, Eur. J. Biochem., 109, 495 (1980).CrossRefGoogle Scholar
  26. [26]
    H.W. Chang, E. Bock and E. Neumann, in Molecular Basis of Nerve Activity, J.P. Changeux, F. Hucho, A. Maelicke and E. Neumann, (Editors), W. de Gruyter, Berlin, (1985), pp. 369–385.Google Scholar
  27. [27]
    R.R. Neubig, N.D. Boyd and J.B. Cohen, Biochemistry, 21, 3460 (1982).CrossRefGoogle Scholar
  28. [28]
    P. Pennefather and D.M. Quastel, Br. J. Pharmacol., 77, 395 (1982).CrossRefGoogle Scholar
  29. [29]
    T. Heidmann, J. Bernhardt, E. Neumann and J.P. Changeux, Biochemistry, 22, 5452 (1983).CrossRefGoogle Scholar
  30. [30]
    G. Boheim, W. Hanke, F.J. Barrantes, H. Eibl, B. Sakmann, G. Fels and A. Maelicke, Proc. Natl Acad. Sci., USA, 78, 3586 (1981).CrossRefGoogle Scholar
  31. [31]
    M. Montal, P. Labarca, D.F. Fredkin, B.A. Suarez-Isla and J. Lindstrom, Biophys. J., 45, 165 (1984).CrossRefGoogle Scholar
  32. [32]
    M. Spondheim and E. Neumann, Biophys. Chem., 3, 109 (1975).CrossRefGoogle Scholar
  33. [33]
    D. Thiele and W. Guschlbauer, Biopolymers, 8, 361 (1969).CrossRefGoogle Scholar
  34. [34]
    A. Katchalsky and R. Spangler, Q. Rev. Biophys., 1, 127 (1968).CrossRefGoogle Scholar
  35. [35]
    A. Katchalsky and E. Neumann, Int. J. Neurosci., 3, 175 (1972).CrossRefGoogle Scholar
  36. [36]
    E. Neumann, Angew. Chem., 85, 430 (1973);CrossRefGoogle Scholar
  37. [36a]
    E. Neumann, Angew. Chem., Int. Ed. Engl, 12, 356 (1973).CrossRefGoogle Scholar
  38. [37]
    D.H. Everett, Trans. Faraday Soc., 51, 1551 (1955).CrossRefGoogle Scholar
  39. [38]
    D.H. Everett, in The Solid-Gas Interface, E.A. Flood (Editor), Marcel Dekker, New York, (1967) Vol. 2, p. 1055.Google Scholar
  40. [39]
    E. Neumann, in Nicotinic Acetylcholine Receptor, A. Maelicke (Editor), NATO ASI Serien, (1986), Vol. H3, pp. 177–196.CrossRefGoogle Scholar
  41. [40]
    N.D. Boyd and J.B. Cohen, Biochemistry, 19, 5344 (1980).CrossRefGoogle Scholar
  42. [41]
    B. Katz, Release of Neural Transmitter Substances, Liverpool University Press, Liverpool, (1969) p. 55.Google Scholar
  43. [42]
    E. Neumann and J. Bernhardt, J. Physiol. (Paris), 77, 1061 (1981).Google Scholar
  44. [43]
    B. Sakmann, J. Patlack and E. Neher, Nature (London), 286, 71 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Eberhard Neumann

There are no affiliations available

Personalised recommendations