Mechanism of Ca2+ Translocation as Studied by the use of Detergent-Solubilized and Membrane Preparations of Sarcoplasmic Reticulum Ca2+-ATPase

  • Jesper Møller
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 51)

Abstract

The sarcoplasmic reticulum (SR) forms a closed, membraneous network, consisting of tubules and terminal cisternae that surround the myofibrils of skeletal muscle. In these membranes the dominant protein component is a Ca2+-ATPase that is involved in the uptake of Ca2+ released from the terminal cisterna following neuromuscular excitation. The uptake occurs against a large concentration gradient of Ca2+, maintaining a low concentration of Ca2+ in the cytoplasma in the resting state of the muscle [1–4]. The sarcoplasmic reticulum Ca2+-ATPase serves as a prototype of other Ca2+-transporting ATPase’s and is related to the family of EiP-E2P aspartylphosphorylated transport ATPase’s, which in addition to Ca2+-ATPase comprises Na+, K+-ATPase, gastric and plasma membrane H+-ATPase, and bacterial K+-ATPases [5]. A minimal reaction scheme for sarcoplasmic reticulum Ca2+-ATPase is shown in Fig. 1. In this scheme E1 conformations denote enzyme with Ca2+ translocating sites oriented outwards, while E2 conformations denote conformations with Ca2+ oriented inwards towards the intravesicular space. In the first step enzyme reacts with 2 Ca2+ at the translocation sites on the cytoplasmic aspect of the membrane and then with MgATP to form phosphorylated enzyme, covalently modified at aspartate residue No. 351. The phosphorylation reaction is reversible, i.e. E1P can be dephosphorylated by addition of ADP (Ca2E1P or E1P in short hand notation).

Keywords

Sucrose High Performance Liquid Chromatography Glycol Vanadate Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Hasselbach and M. Makinose, Biochem. Z., 333, 518 (1961).Google Scholar
  2. [2]
    W. Hasselbach, Top. Curr. Chem., 78, 1 (1979).CrossRefGoogle Scholar
  3. [3]
    M.L. Entman and W.B.V Winkle, in Sarcoplasmic Reticulum in Muscle Physiology, M.L. Entman and W.V. Winkle, (Editors), CRC Press, FLA, (1986), p. 1.Google Scholar
  4. [4]
    L. de Meis, in The Sarcoplasmic Reticulum, Transport and Energy Transduction, J. Wiley & Sons, NY, (1981).Google Scholar
  5. [5]
    N.M. Green, W.R. Taylor, C. Brandl, B. Korczak and D.H. MacLennan, Ciba Fdn. Symp., 122, 93 (1986).Google Scholar
  6. [6]
    S. Yamada and N. Ikemoto, J. Biol. Chem., 260, 3108 (1980).Google Scholar
  7. [7]
    M. Chiesi and G. Inesi, Biochemistry, 19, 2912 (1980).CrossRefGoogle Scholar
  8. [8]
    N. Ikemoto, J. Biol. Chem., 251, 7275 (1976).Google Scholar
  9. [9]
    J.P. Andersen, K. Lassen and J.V. Moller, J. Biol. Chem., 260, 371 (1985).Google Scholar
  10. [10]
    C. Tanford, Gen. J. Physiol, 77, 223 (1981).CrossRefGoogle Scholar
  11. [11]
    W. Hasselbach and H. Oetliker, Annu. Rev. Physiol., 45, 325 (1983).CrossRefGoogle Scholar
  12. [12]
    G. Meissner, Mol. Cell Biochem., 55, 65 (1983).CrossRefGoogle Scholar
  13. [13]
    P. Zimniak and E. Racker, J. Biol. Chem., 253, 4631 (1978).Google Scholar
  14. [14]
    T. Morimoto and M. Kasai, J. Biochem. (Tokyo), 99, 1071 (1986).Google Scholar
  15. [15]
    M. Yanaguchi and T. Kanazawa, J. Biol. Chem., 260, 4896 (1985).Google Scholar
  16. [16]
    D.H. Haynes, Arch. Biochem. Biophys., 215, 444 (1982).CrossRefGoogle Scholar
  17. [17]
    Y. Takakuwa and T. Kanazawa, J. Biol. Chem., 257, 10770 (1982).Google Scholar
  18. [18]
    J.J. Feher and F.N. Briggs, Biochim. Biophys. Acta, 121, 389 (1983).Google Scholar
  19. [19]
    U. Gerdes and J.V. Moller, Biochim. Biophys. Acta, 734, 191 (1983).CrossRefGoogle Scholar
  20. [20]
    G. Francois, Biochim. Biophys. Acta, 173, 86 (1969).CrossRefGoogle Scholar
  21. [21]
    W.H.F.M. Mommaerts, Proc. Natl. Acad. Sci. USA, 58, 2476 (1967).CrossRefGoogle Scholar
  22. [22]
    R. K. Nakamoto and G. Inesi, FEBS Lett., 194, 258 (1986).CrossRefGoogle Scholar
  23. [23]
    P. Csermely, C. Katopis, B.A. Wallace and A. Martonosi, Biochem. J., 241, 663 (1987).Google Scholar
  24. [24]
    J.K. Blasie, L.G. Herbette, D. Pascolini, V. Skita, D.H. Pierce and A. Scarpa, Biophys. J., 48, 9 (1985).CrossRefGoogle Scholar
  25. [25]
    I.L.R. Arrondo, H.H. Mantsch, N. Mullner, S. Pikula and A. Martonosi, J. Biol. Chem., 262, 9037 (1987).Google Scholar
  26. [26]
    J.P. Andersen, P.L. Jørgensen and J.V. Moller, Proc. Natl. Acad. Sci. USA, 82, 4573 (1985).CrossRefGoogle Scholar
  27. [27]
    J.P. Andersen, B. Vilsen, J.H. Collins and P.L. Jørgensen, J. Membr, Biol., 93, 85 (1986).CrossRefGoogle Scholar
  28. [28]
    C. Tanford, Y. Nozaki, J.A. Reynolds and S. Makino, Biochemistry, 13, 2369 (1974).CrossRefGoogle Scholar
  29. [29]
    J.V. Moller, M. le Maire and J.P. Andersen in Progress in Protein-Lipid Interactions, A. Watts, and J.J.H.H.M. de Pont (Editors), Elsevier, Amsterdam, (1986), Vol. 2, Chap., 5, p. 147.Google Scholar
  30. [30]
    J.P. Andersen, B. Vilsen, H. Nielsen and J.V. Moller, Biochemistry, 25, 6439 (1986).CrossRefGoogle Scholar
  31. [31]
    S. Lund, S. Orlowski, B. de Foresta, P. Champeil, M.le Maire and J.V. Moller (unpublished observations).Google Scholar
  32. [32]
    J.V. Moller, M. le Maire and J.P. Andersen, Meth. Enzymol., 151, 261 (1988).CrossRefGoogle Scholar
  33. [33]
    M. le Maire, J.V. Moller and C. Tanford, Biochemistry, 15, 2336 (1976).CrossRefGoogle Scholar
  34. [34]
    M. le Maire, K.E. Lind, K.E. Jørgensen, H. Røigaard-Petersen and J.V. Moller, J. Biol. Chem., 253, 7051 (1978).Google Scholar
  35. [35]
    L. Dux, S. Pikula, N. Mullner and A. Martonosi, J. Biol. Chem., 262, 6439 (1987).Google Scholar
  36. [36]
    K.E. Jørgensen, K.E. Lind, H. Røigaard-Petersen and J.V. Moller, Biochem. J., 169, 489 (1978).Google Scholar
  37. [37]
    J.L. Silva and S. Verjovski-Almeida, J. Biol. Chem., 260, 4764 (1985).Google Scholar
  38. [38]
    B. de Foresta, M. le Maire, S. Orlowski, P. Champeil, S. Lund, J.V. Moller, F. Michelangeli and A.G. Lee, Biochemistry (in press).Google Scholar
  39. [39]
    S. Lund and J.V. Moller, J. Biol. Chem., 263, 1654 (1988).Google Scholar
  40. [40]
    B. Vilsen and J.P. Andersen, Eur. J. Biochem., 170, 421 (1987).CrossRefGoogle Scholar
  41. [41]
    B. Vilsen and J.P. Andersen, Biochim. Biophys. Acta, 855, 429 (1986).CrossRefGoogle Scholar
  42. [42]
    Y. Dupont, Y. Chapron and R. Pougeois, Biochem. Biophys. Res. Comm., 106, 1272 (1982).CrossRefGoogle Scholar
  43. [43]
    J.P. Froehlich and E.W. Taylor, J. Biol. Chem., 251, 2307 (1976).Google Scholar
  44. [44]
    T. Watanabe, D. Lewis, R. Nakamoto, M. Kurzmack, C. Fronticelli and G. Inesi, Biochemistry, 20, 6617 (1981).CrossRefGoogle Scholar
  45. [45]
    U. Pick and S.J.D. Karlish, Biochim. Biophys. Acta, 626, 255 (1980).CrossRefGoogle Scholar
  46. [46]
    U. Pick and E. Racker, Biochemistry, 18, 108 (1979).CrossRefGoogle Scholar
  47. [47]
    A. Dutton, E.D. Rees and S.J. Singer, Proc. Natl. Acad. Sci. USA, 73, 1532 (1976).CrossRefGoogle Scholar
  48. [48]
    J.P. Andersen, J.V. Moller and P.L. Jørgensen, J. Biol. Chem., 257, 8300 (1982).Google Scholar
  49. [49]
    H. Barrabin, H.M. Scofano and G. Inesi, Biochemistry, 23, 1542 (1984).CrossRefGoogle Scholar
  50. [50]
    J.P. Andersen and B. Vilsen, FEBS Lett., 189, 13 (1985).CrossRefGoogle Scholar
  51. [51]
    C. Mitchinson, A.F. Wilderspin, B.J. Trinnaman and N.M. Green, FEBS Lett., 146, 87 (1982).CrossRefGoogle Scholar
  52. [52]
    N. Ikemoto and R.W. Nelson, J. Biol. Chem., 259, 11790 (1984).Google Scholar
  53. [53]
    T.L. Hill and G. Inesi, Proc. Nat. Acad. Sci. USA, 79, 3978 (1982).CrossRefGoogle Scholar
  54. [54]
    B. Vilsen and J.P. Andersen, Biochim. Biophys. Acta, 898, 313 (1987).CrossRefGoogle Scholar
  55. [55]
    J.V. Moller, J.P. Andersen and M. le Maire, Mol. Cell Biochem., 42, 93 (1982).Google Scholar
  56. [56]
    M. le Maire and J.V. Moller, in Sarcoplasmic Reticulum in Muscle Physiology, M.L. Entman and W.B.V. Winkle (Editors), CRC Press, FLA., (1986), Vol. 1, Chap. 4, p. 101.Google Scholar
  57. [57]
    K. Taylor, L. Dux and A. Martonosi, J. Membr. Biol., 174, 193 (1984).Google Scholar
  58. [58]
    L. Dux, K.A. Taylor, H.P. Ting-Beall and A.N. Martonosi, J. Biol. Chem., 260, 11730 (1985).Google Scholar
  59. [59]
    T. Watanabe and G. Inesi, Biochemistry, 21, 3254 (1982).CrossRefGoogle Scholar
  60. [60]
    J.P. Andersen, E. Skriver, T.S. Mahrous and J.V. Moller, Biochim. Biophys. Acta, 685, 355 (1983).Google Scholar
  61. [61]
    M. le Maire, C. Heegaard, J.P. Andersen, T. Gulik-Krzwycki and J.V. Moller (unpublished observations).Google Scholar
  62. [62]
    T.C. Squire, S.E. Hughes and D.D. Thomas, J. Biol. Chem., 263, 9162 (1988).Google Scholar
  63. [63]
    C. Franzini-Armstrong and D.G. Ferguson, Biophys. J., 48, 607 (1985).CrossRefGoogle Scholar
  64. [64]
    G. Allen, B.J. Trinnaman and N.M. Green, Biochem. J., 187, 591 (1980).Google Scholar
  65. [65]
    D.H. MacLennan, C.J. Brandl, B. Korczak and N.M. Green, Nature (London), 316, 696 (1985).CrossRefGoogle Scholar
  66. [66]
    C.J. Brandl, N.M. Green, B. Korczak and D.H. MacLennan, Cell, 44, 597 (1986).CrossRefGoogle Scholar
  67. [67]
    K.A. Taylor, L. Dux and A. Martonosi, J. Mol. Biol., 187, 417 (1986).CrossRefGoogle Scholar
  68. [68]
    L. Castellani, P.M.D. Hardwicke and P. Vibert, J. Mol. Biol., 185, 579 (1985).CrossRefGoogle Scholar
  69. [69]
    L. Herbette, in Sarcoplasmic Reticulum in Muscle Physiology, M.L. Entman and W.B.V. Winkle (Editors), CRC Revs., CRC Press, FLA., (1986), Vol. 1, Chap. 5, p. 127.Google Scholar
  70. [70]
    S. Highsmith and A.J. Murphy, J. Biol. Chem., 259, 14651 (1984).Google Scholar
  71. [71]
    T.L. Scott, J. Biol. Chem., 260, 14421 (1985).Google Scholar
  72. [72]
    C. Gutierrez-Merino, F. Munkonge, A.M. Mata, J.M. East, B.L. Levinson, R.M. Napier and A.G. Lee, Biochim. Biophys. Acta, 897, 207 (1987).CrossRefGoogle Scholar
  73. [73]
    J.P. Froehlich and P.F. Heller, Biochemistry, 24, 126 (1985).CrossRefGoogle Scholar
  74. [74]
    G. Inesi, J. Biol. Chem., 262, 16338 (1987).Google Scholar
  75. [75]
    C. Tanford, in Structure and Function of Sarcoplasmic Reticulum, S. Fleischer and Y. Tonomura (Editors), Academic Press, NY, (1985), p. 259.Google Scholar
  76. [76]
    C. Perracchia, L. Dux and A.N. Martonosi, J. Mus. Res. Cell. Motil., 5, 431 (1984).CrossRefGoogle Scholar
  77. [77]
    W. Hasselbach, P. Medda, A. Migala and B. Agostini, Z. Naturforsch., 38C, 1015 (1983).Google Scholar
  78. [78]
    J.P. Andersen, B. Vilsen, J.H. Collins and P.L. Jørgensen, J. Membr. Biol., 93, 85 (1986).CrossRefGoogle Scholar
  79. [79]
    T.L. Scott and A.E. Shamoo, J. Membr. Biol., 64, 137 (1982).CrossRefGoogle Scholar
  80. [80]
    T.L. Scott and A.E. Shamoo, Europ. J. Biochem., 143, 427 (1984).CrossRefGoogle Scholar
  81. [81]
    M. le Maire, S. Lund, P. Champeil and J.V. Moller (unpublished observations).Google Scholar
  82. [82]
    G.W. Gould, J. Colyer, J.M. East and A.G. Lee, J. Biol. Chem., 262, 7676 (1987).Google Scholar
  83. [83]
    U. Gerdes, A.M. Nakhla and J.V. Moller, Biochim. Biophys. Acta, 734, 191 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jesper Møller
    • 1
  1. 1.Institute of Medical BiochemistryUniversity of AarhusAarhus CDenmark

Personalised recommendations