Advertisement

Molecular Mechanisms of Ion Transport: New Insights by Patch-Clamp Studies

  • R. Hedrich
  • W. Stühmer
  • B. U. Keller
Chapter
Part of the Ettore Majorana International Science Series book series (EMISS, volume 51)

Abstract

New insights into the molecular processes involved in ion and nutrient transport across membranes of animal and plant cells were obtained since the application of the patch-clamp technique to isolated cells, protoplasts (wall-free plant cells) and organelles. While excitable electrical behaviour was first observed in plant cells about a century ago, the underlying mechanisms are only now being directly studied at the molecular level. Ion channels are integral transmembrane proteins which, when open, allow the movement of ions and some non-electrolytes down their electrochemical potential gradients. Although ion currents in plant cells were among the first to be studied in detail, the electrophysiological characterization of plant ion channels has been somewhat slower compared to their animal counterparts. This has been due to problems specific to plants, such as the presence of the cell wall, having the plasma membrane and vacuolar membrane in series separated by only a relatively small cytoplasmic compartment.

Keywords

Vacuolar Membrane Single Channel Conductance Membrane Patch Electrical Potential Difference Inner Mitochondrial Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O.P. Hamill, A. Marty, E. Neher, B. Sakmann and F.J. Sigworth, Plfügers Arch. Ges. Physiol., 391, 85 (1981).CrossRefGoogle Scholar
  2. [2]
    A. Baumann, A. Grupe, A. Ackermann and O. Pongs, EUBO J., 7, 2457 (1988).Google Scholar
  3. [3]
    W. Stühmer, M. Stocker, B. Sakmann, P. Seeburg, A. Baumann, A. Grupe and O. Pongs, FEBS Lett., 242, 199 (1988).CrossRefGoogle Scholar
  4. [4]
    J.I. Schroeder, R. Hedrich and J.M. Fernandez, Nature (London), 312, 361 (1984).CrossRefGoogle Scholar
  5. [5]
    J.I. Schroeder, K. Raschke and E. Neher, Proc. Natl. Acad. Sci. USA, 84, 4108 (1987).CrossRefGoogle Scholar
  6. [6]
    J.I. Schroeder, J. Gen. Physiol, 92, 667 (1988).CrossRefGoogle Scholar
  7. [7]
    T. Ijima and S. Hagiwara, J. Uemhr. Biol., 100, 73 (1987).Google Scholar
  8. [8]
    R.L. Satter and N. Moran, Physiol. Plant., 72, 816 (1988).CrossRefGoogle Scholar
  9. [9]
    M. Tazawa, T. Shimmen and T. Mimura, Annu. Rev. Plant Physiol., 38, 95 (1987).CrossRefGoogle Scholar
  10. [10]
    A.I. Sokolik and V.M. Yurin, J. Uemhr. Biol, 89, 9 (1986).Google Scholar
  11. [11]
    R. Hedrich and J.I. Schroeder, Annu. Rev. Plant Physiol, 40, 539 (1989).CrossRefGoogle Scholar
  12. [12]
    W.H. Outlaw, Physiol Plant., 59, 407 (1983).CrossRefGoogle Scholar
  13. [13]
    K.L. Edwards and B.G. Pickard in: The Cell Surface in Signal Transduction, E. Wagner, H. Grepping and B. Biller (Editors), NATO ASI Series H12, Springer-Verlag, Heidelberg (1987), p. 41.CrossRefGoogle Scholar
  14. [14]
    Y. Saimi, B. Martinac, M.C. Gustin, M.R. Culbertson, J. Adler and C. Kung, Trends Biochem. Sci., 13, 304 (1988).CrossRefGoogle Scholar
  15. [15]
    P. Matile, Annu. Rev. Plant Physiol, 29, 193 (1978).CrossRefGoogle Scholar
  16. [16]
    R. Gerhardt and H.W. Heldt, Plant Physiol, 83, 399 (1987).CrossRefGoogle Scholar
  17. [17]
    P.K. Hepler and R. Wayne, Annu. Rev. Plant. Physiol, 36, 397 (1985).CrossRefGoogle Scholar
  18. [18]
    R. Hedrich, H. Barbier-Brygoo, H. Felle, U.I. Flügge, U. Lüttge, F.J.M. Maathuis, S. Marx, H.B.A. Prins, K. Raschke, H. Schnabl. J.I. Schroeder, I. Struve, L. Taiz and P. Ziegler, Botan. Acta, 1, 7 (1988).Google Scholar
  19. [19]
    R. Hedrich and A. Kurkdjian, EMBO J., 12, 3061 (1988).Google Scholar
  20. [20]
    R. Hedrich, U.L. Flügge and J.M. Fernandez, FEBS Lett., 204, 228 (1986).CrossRefGoogle Scholar
  21. [21]
    R. Hedrich, J.I. Schroeder and J.M. Fernandez, Trends Biochem. Sci., 12, 49 (1986).CrossRefGoogle Scholar
  22. [22]
    H.A. Kolb, K. Köhler and E. Martinoia, J. Uemhr. Biol, 95, 163 (1987).Google Scholar
  23. [23]
    L. Coyaud, A. Kurkdjian, R. Kado and R. Hedrich, Biochim. Biophys. Acta, 902, 263 (1987).CrossRefGoogle Scholar
  24. [24]
    R. Colombo, R. Cerana, P. Lado and A. Peres, J. Uemhr. Biol, 103, 227 (1988).Google Scholar
  25. [25]
    R. Hedrich and E. Neher, Nature (London), 329, 833 (1987).CrossRefGoogle Scholar
  26. [26]
    Y. Wada, Y. Ohsumi, M. Tanifuji, M. Kasai and Y. Anraku, J. Biol. Chem., 262, 17260 (1987).Google Scholar
  27. [27]
    B. Hille, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland MA. (1984).Google Scholar
  28. [28]
    M. Criado and B.U. Keller, FEBS Lett., 224, 172 (1987).CrossRefGoogle Scholar
  29. [29]
    M.C. Sorgato, B.U. Keller and W. Stühmer, Nature (London), 330. 498 (1987).CrossRefGoogle Scholar
  30. [30]
    B.U. Keller, R. Hedrich, W.L.C. Vaz and M. Criado, Pflügers Arch. Ges. Physiol., 411, 94 (1988).CrossRefGoogle Scholar
  31. [31]
    B.U. Keller, M.C. Sorgato and W. Stühmer, Biophys. J., 53, 31 (1988).Google Scholar
  32. [32]
    W. Junge, Curr. Top. Membrane Biol, 98, 69 (1982).Google Scholar
  33. [33]
    G. Hind, H.Y. Nakatani and S. Izawa, Proc. Natl. Acad. Sci. USA, 71, 1484 (1974).CrossRefGoogle Scholar
  34. [34]
    G. Schönknecht, R. Hedrich, W. Junge and K. Raschke, Nature (London), 336, 589 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. Hedrich
    • 1
  • W. Stühmer
    • 2
  • B. U. Keller
    • 2
  1. 1.Pflanzenphysiologisches InstitutUniversität GöttingenGermany
  2. 2.Max Planck Institut für biophysikalische ChemieGöttingenWest Germany

Personalised recommendations