Skip to main content

Polyamine Biosynthesis in the Brown-Rot Fungus Postia placenta

  • Chapter
  • 184 Accesses

Part of the book series: Biodeterioration Research ((BIOR,volume 3))

Abstract

Polyamines are aliphatic polycations that have been shown to be essential for optimal growth and development of a wide variety of living organisms (McCann et al., 1987). Ornithine decarboxylase (ODC) (EC 4.1.1.17) and arginine decarboxylase (ADC) (EC 4.1.1.19) control the rate-limiting steps responsible for biosynthesis of the polyamines putrescine, spermidine, and spermine. The enzymes ODC and ADC catalyze the decarboxylation of ornithine and arginine, respectively. Both reactions lead to the formation of the polyamine putrescine, the precursor of spermine and spermidine (McCann et al., 1987).

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time, and it is therefore in the public domain and not subject to copyright.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASTM. (1961). ASTM methods. ASTM designation D 1413-61. Standard method of testing wood preservatives by laboratory soil-block cultures. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Birecka, H., Garraway, M.D., Baumann, R.J., and McCann, P.P. (1986). Inhibition of ornithine decarboxylase and growth of the fungus Helminthosporium maydis. Plant Physiol., 80, 798–800.

    Article  CAS  Google Scholar 

  • Bitonti, A.J., and McCann, P.P. (1987). Inhibition of polyamine biosynthesis in microorganisms. In: Inhibition of Polyamine Metabolism, pp. 259–275 (P.P. McCann, E.E. Pegg, and A. Sjoerdsma, eds.) Academic Press, Orlando.

    Google Scholar 

  • Boyle, S.M., Sriranganathan, N., and Cordes, D. (1988). Susceptibility of Microsporum and Trichophyton species to suicide inhibitors of polyamine biosynthesis. J. of Med. and Vet. Mycology, 26, 227–235.

    Article  CAS  Google Scholar 

  • Flores, H.D., Protacio, C.M., and Signs, M.W. (1989). Primary and secondary metabolism of polyamines in plants. In: Plant Nitrogen Metabolism: Recent Advances in Phytochemistry, Vol. 23, (E.E. Conn, ed.) Plenum Press, New York.

    Google Scholar 

  • Highley, T.L. (1973). Effect of alkaline treatment on decay resistance of wood. Forest Prod. J., 23, 47–51.

    CAS  Google Scholar 

  • Kallio, A. and McCann, P. (1981). DL-α-(Difluoromethyl)arginine: a potent enzyme-activated irreversible inhibitor of bacterial arginine decarboxylase. Biochemistry, 20, 3163–3166.

    Article  CAS  Google Scholar 

  • McCann, P.P., Pegg, A.E., and Sjoedsma, A. eds. (1987). Inhibition of Polyamine Metabolism, pp. xiii–xvi, Academic Press, Orlando.

    Google Scholar 

  • Marton, L.J. and Morris, D.R. (1987). Molecular and Cellular Functions of the Polyamines. In: Inhibition of Polyamine Metabolism, pp. 79–105 (P.P. McCann, E.E. Pegg, and A. Sjoerdsma, eds.), Academic Press, Orlando.

    Google Scholar 

  • Metcalf, B.W. Bey, P., Danzin, C., Jung, M.J., Casara, P., and Vevert, J.P. (1978). Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C. 4.1.1.17) by substrate and product analogs. J. Am. Chem. Soc., 100, 2551–2553.

    Article  CAS  Google Scholar 

  • Paulus, T.J. and Davis, R.H. (1981). Regulation of polyamine synthesis in relation to putrescine and spermidine pools in Neurospora crassa. J. Bacteriol., 145:14–20.

    CAS  Google Scholar 

  • Pegg, A.E. (1987). The use of inhibitors to study the biochemistry and molecular biology of polyamine biosynthesis and uptake. In: Inhibition of Polyamine Metabolism, pp. 107–120. (P.P. McCann, E.E. Pegg and A. Sjoerdsma, eds.), Academic Press, Orlando.

    Google Scholar 

  • Rajam, M.V. and Galston, A.W. (1985). The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi. Plant Cell Physiol., 26, 683–692.

    CAS  Google Scholar 

  • Rajam, M.V., Weinstein, L.H., and Galston, A.W. (1985). Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis. Proc. Natl. Acad. Sci., 82, 6874–6878.

    Article  CAS  Google Scholar 

  • Rajam, M.V., Weinstein, L.H., and Galston, A.W. (1986). Kinetic studies on the control of the bean rust fungus (Uromyces phaseoli L.) by an inhibitor of polyamine biosynthesis. Plant Physiol., 82, 485–487.

    Article  CAS  Google Scholar 

  • Slocum, R.D., Kaur-Sawhney, R., and Galston, A.W. (1984). The physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys., 235, 283–303.

    Article  CAS  Google Scholar 

  • Slocum, R.D. and Galston, A.W. (1985). Arginase-mediated hydrolysis of DFMA to DFMO in virto. Plant Physiol., 77 (Suppl.), 45.

    Google Scholar 

  • Slocum, R.D. and Galston, A.W. (1987). Inhibition of polyamine biosynthesis in plants and pathogenic fungi. In: Inhibition of Polyamine Metabolism, pp. 305–316 (P.P. McCann, E.E. Pegg, and A. Sjoerdsma, eds.), Academic Press, Orlando.

    Google Scholar 

  • Stevens, L. and Winther, M.D. (1979). Spermine, spermidine and putrescine in fungal development. Adv. Microbiol. Physiol., 19, 63–148.

    Article  CAS  Google Scholar 

  • Tabor, C.W. (1981). Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: Studies on the regulation of ornithine decarboxylase. Med. Biol., 59, 272–278.

    CAS  Google Scholar 

  • Tabor, C.W. and Tabor, H. (1984). Polyamine. Annu. Rev. Biochem., 53, 749–790.

    Article  CAS  Google Scholar 

  • Tabor, C.W. and Tabor, H. (1985). Polyamines in microorganisms. Microbiol. Reviews, 49, 81–99.

    CAS  Google Scholar 

  • Trione, E.J. Stockwell, V.O., and Austin, H.A. (1988). The effects of polyamines on the growth and development of the wheat bunt fungi. Bot. Gaz., 149, 173–178.

    Article  CAS  Google Scholar 

  • Whitney, P.A. and Morris, D.R. (1978). Polyamine auxotrophs of Saccharomyces cerevisiae. J. Bacteriol., 134, 214–220.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Illman, B.L. (1990). Polyamine Biosynthesis in the Brown-Rot Fungus Postia placenta . In: Llewellyn, G.C., O’Rear, C.E. (eds) Biodeterioration Research. Biodeterioration Research, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9453-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9453-3_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9455-7

  • Online ISBN: 978-1-4757-9453-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics