New Trends in Biocorrosion/Biofouling Monitoring Techniques

  • Hector A. Videla
Part of the Biodeterioration Research book series (BIOR, volume 4)


An industrial plant contains several environments where corrosion and fouling processes are potentially troublesome, such as cooling water systems, storage tanks, water and wastewater treatment facilities and piping (Characklis, 1986). Corrosion is one of the undesirable results of fouling, in addition to energy losses owing to increased heat transfer and frictional resistances. A recirculating cooling water system provides a good example of an industrial environment where corrosion and fouling hazard is particularly critical and needs to be kept under strict control.


Extracellular Polymeric Substance Sampling Device Cooling Water System Surface Analysis Technique Microbial Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, M. C., Silva, R. A., Canales, C. G., and Videla, H/ A. (1991). Field and laboratory evaluation of a new multipurpose sampling device for monitoring microbially influenced corrosion and biofilms in recirculating cooling water systems, In: Biodeterioration and Biodegradation 8, pp. 592594 ( H. W. Rossmoore, ed.), Elsevier Applied Science, London.Google Scholar
  2. Cook, P. E., and Gaylarde, C. C. (1987). Rapid techniques for the detection and quantification of sulfate-reducing bacteria, In: Microbial Problems in the Offshore Oil Industry, p. 245 ( E. C. Hill, J. L. Shennan and R. J. Watkinson, eds.), John Wiley & Sons, Chichester.Google Scholar
  3. Characklis, W. G. (1986). Influence of microbial films on industrial processes,d Proceedings of Argentine-USA Workshop on Biodeterioration (CONICETNSF), pp 181–217 ( H. A. Videla, ed.), published by Aquatec Quimcia S.A., San Paulo, BRAZIL.Google Scholar
  4. Characklis, W. G. (1990). Biofilms processes, In: Biofilms, pp. 195–231 ( W. G. Characklis, and K. C. Marshall, eds.) John Wiley & Sons, New York.Google Scholar
  5. Characklis, W. G., and Marshall, K. C. (1990). Biofilms: A basis for an interdisciplinary approach, In: Biofilms, pp. 3–15 ( W. G. Characklis, and K. C. Marshall, eds.), John Wiley & Sons, New York.Google Scholar
  6. Dexter, S. C., and Gao, G. Y. (1988). Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel. Corrosion, 44, 717–23.CrossRefGoogle Scholar
  7. Dexter, S. C., Duquette, D. J., Siebert, O. W., and Videla, H. A. (1991). Use and limitations of electrochemical techniques for investigating microbiological corrosion. Corrosion, 47, 308–318.CrossRefGoogle Scholar
  8. Erauzkin, E. (1988). Biocorrosion of AISI stainless steel by sulfate-reducing bacteria, In: Microbial Cor. I, pp. 412–430 ( C. A. C. Sequeria, and A. K. Tiller, eds.), Elsevier Applied Science, London.Google Scholar
  9. Gilbert, P. D., and Herbert, B. N. (1987). Monitoring microbial fouling in flowing systems using coupons, In: Industrial Microbiological Testing, pp. 79–98 ( J. W. Hopton, and E. C. Hill, eds.), Blackwell Scientific Publications, Oxford.Google Scholar
  10. Hamilton, W. A. (1985). Sulfate-reducing bacteria and anaerobic corrosion. Ann. Rev. Microbiol., 39, 195–217.CrossRefGoogle Scholar
  11. Lamont, J. E. (1988). Role of boicides in controlling microbial corrosion, In: Microbial Cor., pp. 224–234 ( C. A. C. Sequeira, and A. K. Tiller, eds.), Elsevier Applied Science, London.Google Scholar
  12. Lee, W., Lewandowski, Z., Ikabe, S., and Characklis, W. G. (1992). Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria. Corrosion 92, paper no. 190, Houston, NACE.Google Scholar
  13. Pope, D. H. (1986). MIC in U.S. Industries. Detection and prevention, In: Proceedings of Argentine-USA Workshop on Biodeterioration (CONICETNSF), pp. 105–118 ( H. A. Videla, ed.), published by Aquatec Quimica S.A., San Paulo, Brazil.Google Scholar
  14. Prasad, R. (1988). Pros and cons of ATP measurement in oil field waters, Corrosion 88, paper no. 87, Houston, NACE.Google Scholar
  15. Ruseska, I., Robbins, J., Costerton, J. W., and Lashen, E. S. (1982). Biocide testing against corrosion-causing oil-field bacteria helps control plugging. Oil, Gas J., 80, 253–264.Google Scholar
  16. Scotto, V., DiCintio, R, and Marcenaro, G. (1985). The influence of marine microbial film on stainless steel corrosion behavior. Cor. Sci., 25, 184194.Google Scholar
  17. Szklarska-Smialowska, Z. (1986). Measurement of susceptibility to pitting, In: Pitting Corrosion of Metals, pp. 39–67, Houston, NACE.Google Scholar
  18. Videla, H. A. (1989). Metal dissoulton/redox in biofilms, In: Structure and Function of Biofilms, pp. 301–320, ( W. G. Characklis, and P. A. Wilderer, eds.), John Wiley & Sons, Chichester.Google Scholar
  19. Videla, H. A., deMele, M. F. L., Silva, R. A., Bianchi, F., and Gonzales Canales, C. (1990). A practical approach to the study of the interaction between biofouling and passive layers on mild steel and stainless steel in cooling water. Corrosion 90, paper no. 124, Houston, NACE.Google Scholar
  20. Videla, H. A., Guiamet, P. S., Pardini, O. R., Echarte, E., Trujillo, D., and Freitas, M. M. S. (1991). Monitoring biofilms and MIC in an oilfield water injection system. Corrosion 91, paper no. 103, Houston, NACE.Google Scholar
  21. Videla, H. A. (1991). Microbially induced corrosion: an updated overview, In: Biodeterioration and Biodegradation *, pp. 63–88 ( H. W. Rossmore, ed.), Elsevier Applied Science, London.Google Scholar
  22. Wagner, P. (1992). Investigations of MIC using environmental scanning electron microscopy. Corrosion 92, paper no. 185, Houston, NACE.Google Scholar
  23. White, D. C., Nivens, D. E., Nichols, P. D., Mikell, A. T., Kerger, B. D., Henson, J. M., Geesey, G. G., and Clarkmem, C. K. (1986). Role of anaerobic bacteria and their extracellular polymers in the facilitation of corrosion: use of Fouriertransforming infrared spectroscopy and “signature” phospholipid fatty acid analysis, In: Biologically Induced Corrosion, pp. 233–243, ( S. C. Dexter, ed.), Houston, NACE.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Hector A. Videla
    • 1
  1. 1.Marketing DepartmentAquatec Quimica S.A.Sao PauloBrazil

Personalised recommendations