Advertisement

Evaluation of Stainless Steel Susceptibility to Microbiologically Influenced Corrosion: An Updated Review

  • D. A. Moreno
  • J. R. Ibars
  • C. Ranninger
  • M. F. L. De Mele
  • H. A. Videla
Part of the Biodeterioration Research book series (BIOR, volume 4)

Abstract

Stainless steels (SS) are frequently used in a variety of industrial applications, where good corrosion resistance is needed. SS are usually in contact with waters of very dissimilar nature that generally, are favorable environments for microbial growth. Thus, they are susceptible to microbiologically influenced corrosion MIC (Pope et al., 1989).

Keywords

Electrochemical Impedance Spectroscopy Corrosion Potential Electrochemical Technique Natural Seawater Cathodic Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beech, I.B., and Gaylarde, C.C. (1989). Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces. J. Appl. Bacteriol., 67, 201–207.Google Scholar
  2. Benbouzid-Rollet, N.D., Guezennec, J., Conte, M., and Prieur, D. (1991). Experimental biofilms containing sulphate-reducing and fermentative bacteria on stainless steel in a laboratory tubular flow-system. In: Microbiallv Influenced Corrosion and Biodeterioration, 3/ pp. 47–54 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  3. Borenstein, S. (1988). Microbially influenced corrosion failures of austenitic stainless steels welds. Mat. Perf., 27 (8), 62–66.Google Scholar
  4. Borenstein, S.W. (1991). Microbiologically influenced corrosion of austenitic stainless steel weldments. Mat. Perf., 30 (1), 52–54.Google Scholar
  5. Borenstein, S.W., and Lindsay, P.B. (1987). Planning and conducting microbiologically influenced corrosion failure analyses. Corrosion/87, paper no. 381, Houston, NACE.Google Scholar
  6. Borenstein, S.W., and White, D.C. (1989). Influence of welding variables on microbiologically influenced corrosion of austenitic stainless steel weldments. Corrosion/89, paper no. 183, Houston, NACE.Google Scholar
  7. Buchanan, R.A., Xiao Zhang, Ping Li, Stansbury, E.E., Dowling, N.J.E., Hall, T., and Lindberg, A. (1991). Effects of surface condition on susceptibility to microbially influenced corrosion: stainless steel weldments and carbon steel. In: Microbially Influenced Corrosion and Biodeterioration, 3/ pp. 99102 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  8. Cristofaro, N.B. de, Acosta, C.A., Salvarezza, R.C., and Videla, H.A. (1986). The effect of sulfides on the electrochemical behavior of AISI 304 stainless steel in neutral buffered solutions. Corrosion, 42 (4), 240–242.Google Scholar
  9. Das, C.R., and Mishra, K.G. (1986). Biological corrosion of welded steel due to marine algae. In: Biologically Induced Corrosion, pp. 1 14–1 17 (S.C. Dexter, ed.), NACE-8, International Corrosion Conferences Series, Houston, NACE.Google Scholar
  10. Dexter, S.C., and Gao, G.Y. (1988). Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel. Corrosion, 44 (10), 717–723. Discussion on this paper by F. Mansfeld and B. Little in Corrosion, 45 (10), 786–789.Google Scholar
  11. Dexter, S.C., and Lin, S. (1990). Effect of marine bacteria on calcareous deposition. Corrosion/90, paper no. 157, Houston, NACE.Google Scholar
  12. Dexter, S.C., Lucas, K.E., and Gao, G.Y. (1986). The role of marine bacteria in crevice corrosion initiation. In: Biologically Induced Corrosion, pp. 144–153 (S.C. Dexter, ed.), NACE-8, International Corrosion Conferences Series, Houston, NACE.Google Scholar
  13. Dexter, S.C., Duquette, D.J., Siebert, O.W., and Videla, H.A. (1991). Use and limitations of electrochemical techniques for investigating microbiological corrosion. Corrosion, 47 (4), 308–318.Google Scholar
  14. Dowling, N.J.E., Guezennec, J., and White, D.C. (1986). Facilitation of corrosion of stainless steel exposed to aerobic seawater by microbial biofilms containing both facultative and absolute anaerobes. In: Microbial Problems in the Offshore Oil Industry, pp. 27–38 ( E.C. Hill, J.L. Shennan and R.J. Wilkinson, eds.), Institute of Petroleum, London.Google Scholar
  15. Dowling, N.J.E., Guezennec, J., and White, D.C. (1988). Methods for insight into mechanisms of microbially influenced metal corrosion. In: Biodeterioration 7, pp. 404–410 ( D.R.Houghton, R.N.Smith and H.O.W.Eggins, eds.), Elsevier Applied Science, London.CrossRefGoogle Scholar
  16. Dowling, N.J.E., Franklin, M., White, D.C., Lee, C.H., and Lundin, C. (1989). The effect of microbiologically influenced corrosion on stainless steel weldments in artificial seawater. Corrosion/89, paper no. 187, Houston, NACE.Google Scholar
  17. Dowling, N.J.E., White, D.C., Buchanan, R.A., Danko, J.C., Vass, A., Brooks, S., and Ward, G.L. (1990). Microbiologically influenced corrosion of 6% molybdenum stainless steels and AISI 316: comparison with ferric chloride testing. Corrosion/90, paper no. 532, Houston, NACE.Google Scholar
  18. Erauzkin, E. (1988). Biocorrosion of AISI stainless steel by sulphate reducing bacteria. In: Microbial Corrosion 1, pp. 412–430 ( C.A.C. Sequeira and A.K. Tiller, eds.), Elsevier Applied Science, London.Google Scholar
  19. Fera, P., Siebel, M.A., Characklis, W.G., and Prieur, D. (1988). Seasonal variations in bacterial colonization of stainless steel, aluminum and polycarbonate surfaces in a seawater flow system. Biofoulinq, 1 (3), 251–261.Google Scholar
  20. Feron, D. (1991). Chemical and electrochemical aspects of the corrosion of stainless steels in the presence of sulphate reducing bacteria. In: Microbially Influenced Corrosion and Biodeterioration, 5/ pp.73–83 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  21. Franklin, M.J., Guckert, J.B., White, D.C., and Isaacs, H.S. (1991). Spatial and temporal relationships between localized microbial metabolic activity and electrochemical activity of steel. Corrosion/91, paper no. 115, Houston, NACE.Google Scholar
  22. Gaylarde, C.C., and Cook, P.E. (1987). ELISA techniques for the detection of sulphate-reducing bacteria. In: Immunoassay Techniques for the Detection of Bacteria, pp. 231–244 ( J.M. Grange, A. Fox and N.L. Morgan, eds.), Blackwell Scientific Publications, Oxford.Google Scholar
  23. Gaylarde, C.C., Edyvean, R.G.J., and Videla, H.A. (1992). Biologically Induced Corrosion, Research Studies Press, London, in press.Google Scholar
  24. Geesey G.G., and Bremer P.J., (1992). Properties of a bacterium that causes pitting corrosion. In: Proceedings of the International Marine Biotechnology Conference ‘81, Society for Industrial Microbiology, Annandale, Va, in press.Google Scholar
  25. Gendron, T.S., Cleland, R.D., and Lavoie, P.A. (1991). The role of chloride and SRB in underdeposit corrosion of alloy 800 in fresh water. In: Microbially Influenced Corrosion and Biodeterioration, 2/ pp. 1–7 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  26. Gilbert, P.D., and Herbert, B.N. (1987). Monitoring microbial fouling in flowing systems using coupons. In: Industrial Microbiological Testing, pp. 79–98 ( J.W.Hopton and E.C.Hill, eds.), Blackwell Scientific Publications, Oxford.Google Scholar
  27. Griffin, R.B., Cornwell, L.R., Seitz, W., and Estes, E. (1988). Localized corrosion under biofouling. Corrosion/88, paper no. 400, Houston, NACE.Google Scholar
  28. Guezennec, J., Scotto, V., and Alabiso, G. (1988). Biocorrosion of stainless steels in natural seawater comparison tests in field and in lab. In: Microbial Corrosion 1, pp. 183–187 ( C.A.C. Sequeira and A.K. Tiller, eds.), Elsevier Applied Science, London.Google Scholar
  29. Gundersen, R., Johansen, B., Gartland, P.O., Vintermyr, I., Tunold, R., and Hagen, G. (1989). The effect of sodium hypochlorite on the electrochemical properties of stainless steels and on the bacterial activity in seawater. Corrosion/89, paper no. 108, Houston, NACE.Google Scholar
  30. Hernandez, G., Lemaitre, C., Guezennec, J., Audouard, J.P., and Beranger, G. (1988). Etude de l’influence d’elements poisons sur la resistance a la corrosion bacterienne d’aciers inoxydables en milieu marin. In: Proc. 7th Intl. Congr. on Marine Corrosion and Fouling, Valencia, Spain, in press.Google Scholar
  31. bars, J.R., Moreno, D.A., Lloret, M., and Ranninger, C. (1988). Microstructural effects on the electrochemical behaviour of AISI 410 in microbiological media. In: Microbial Corrosion 1, pp. 287–289 (C.A.C. Sequeira and A.K. Tiller, eds.), Elsevier Applied Science, London.Google Scholar
  32. Johnsen, S., and Bardai, E. (1986). The effect of a microbiological slime layer on stainless steel in natural sea water. Corrosion/86, paper no. 227, Houston, NACE.Google Scholar
  33. Juanas, F., de la Cruz, M., and Ranninger, C. (1988). Corrosión por bacterias de acero inoxidable AISI 304L. Rev. Iberoamer. Corros. Prot., 19 (2), 84–85.Google Scholar
  34. Kearms, J.R., and Borenstein, S.W. (1991). Microbially influenced corrosion testing of welded stainless alloys for nuclear power plant service water systems. Corrosion/91, paper no. 279, Houston, NACE.Google Scholar
  35. Licina, G.J. (1989). An overview of microbiologically influenced corrosion in nuclear power plants. Mat. Perf., 28 (10), 55–60.Google Scholar
  36. Licina, G.J., Pytel, M.L., and Hirota, N.S. (1990). An innovative method for mitigation of MIC in stainless steel weldments. Corrosion/90, paper no. 114, Houston, NACE.Google Scholar
  37. Licina, G.J., Anderson, S., Maner, M.K., and Ward, G.L. (1991). In-plant electrochemical studies of service water system materials. Corrosion/91, paper no. 277, Houston, NACE.Google Scholar
  38. Little, B.J., Wagner, P.A., Gerchakov, S.M., Walch, M. and Mitchell, R. (1986). The involvement of a thermophilic bacterium in corrosion processes. Corrosion, 42 (9), 533–536.Google Scholar
  39. Little, B.J., Wagner, P., and Duquette, D. (1988). Microbiologically induced increase in corrosion current density of stainless steel under cathodic protection. Corrosion, 44 (5), 270–274.Google Scholar
  40. Little, B., Ray, R., Wagner, P., Lewandowski, Z., Lee, W.C., Characklis, W.G., and Mansfeld, F. (1990). Electrochemical behavior of stainless steels in natural seawater. Corrosion/90, paper no. 150, Houston, NACE.Google Scholar
  41. Little, B., Wagner, P., and Mansfeld, F. (1991a). An electrochemical evaluation of biofilms and calcareous deposits formed in natural seawater. In: Microbially Influenced Corrosion and Biodeterioration, 5/ pp. 9–15 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  42. Little, B., Ray, R., Wagner, P., Lewandowski, Z., Chee Lee, W., Characklis, W.G., and Mansfeld, F. (1991 b),Impact of biofouling on the electrochemical behaviour of 304 stainless steel in natural seawater. Biofoulinq, 3 (1), 45–59.Google Scholar
  43. Lloret, M., Moreno, D.A., APARICIO, M.L., and Ranninger, C. (1988). Stainless steel corrosion analysis in semicontinous culture of sulphate-reducing bacteria. In: Microbial Corrosion 1, pp. 335–360 ( C.A.C. Sequeira and A.K. Tiller, eds.), Elsevier Applied Science, London.Google Scholar
  44. Mansfeld, F., Tsai, R., Shih, H., Little, B., Ray, R., and Wagner, P. (1990). Results of exposure of stainless steels and titanium to natural seawater. Corrosion/90, paper no. 109, Houston, NACE.Google Scholar
  45. Mansfeld, F., and Little, B. (1991). A technical review of electrochemical techniques applied to microbiologically influenced corrosion. Cor.Sci., 32 (3), 247–272.Google Scholar
  46. Marmo, S.A., Nurmiaho-Lassila, E.L., Varjonen, O., and Salkinoja-Salonen, M.S. (1991). Biofouling and microbially induced corrosion on paper machines. In: Microbially Influenced Corrosion and Biodeterioration, 4/ pp. 33–38 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  47. Maxwell, S., and Hamilton, W.A. (1986). Modified radiorespirometric assay for determining the sulfate reduction activity of biofilms on metal surfaces. J. Microbiol. Met., 5 (2), 83–91.Google Scholar
  48. Mele, M.F.L. de, Moreno, D.A., (bars, J.R., and Videla, H.A. (1991). Effect of inorganic and biogenic sulfide on localized corrosion of heat-treated type 304 stainless steel. Corrosion, 47 (1), 24–30.Google Scholar
  49. Mollica, A., Trevis, A., Traverso, E., Ventura, G., Scotto, V., Alabiso, G., Marcenaro, G., Montini, V., de Carolis, G. and Dellepiane, R. (1984). Interaction between biofouling and oxygen reduction rate on stainless steel in seawater. In: Proc. 6th Intl. Congr. on Marine Corrosion andFoulinq, p 269–281. Athens, Greece.Google Scholar
  50. Mollica, A., Trevis, A., Traverso, E., Ventura, G., Carolis, G. de, and Dellepiane, R. (1989). Cathodic performance of stainless steels in natural seawater as a function of microorganism settlement and temperature. Corrosion, 45 (1), 48–56.Google Scholar
  51. Mollica, A., (1992). Biofilm and corrosion on active-passive alloys in seawater. In: International Biodeterioration, in press.Google Scholar
  52. Moreno, D.A. (1990). Anälisis de la susceptibilidad a la corrosión microbiana de los aceros inoxidables en diferentes estados microestructurales. Ph.D. Dissertation. Universidad de Alcalà de Henares, Madrid, Spain.Google Scholar
  53. Moreno, D.A., Mele, M.F.L. de, (bars, J.R., and Videla, H.A. (1991). Influence of microstructure on the electrochemical behavior of type 410 stainless steel in cloride media with inorganic and biogenic sulfide. Corrosion, 47 (1), 2–9.Google Scholar
  54. Moreno, D.A., (bars, J.R., Ranninger, C., and Videla, H.A. (1992). Technical note: Use of potentiodynamic polarization to assess pitting of stainless steels by sulfate-reducing bacteria. Corrosion, in press.Google Scholar
  55. Nekoksa, G., and Gutherman, B. (1991). Test results from electrochemical exposure racks at the Crystal river nuclear power plant. Corrosion/91, paper no. 275, Houston, NACE.Google Scholar
  56. Nivens, D.E., Nichols, P.D., Henson, J.M., Geesey, G.G., and White, D.C. (1986). Reversible acceleration of the corrosion of AISI 304 stainless steel exposed to seawater induced by growth and secretions of the marine bacterium Vibrio natriegens. Corrosion, 42 (4), 204–210. OCIDE. (1988). Corrosión bacteriana de aceros inoxidables. Final Report, Proj. no. 120. 11. Madrid, Spain.Google Scholar
  57. Ortiz, C., Guiamet, P.S., and Videla, H.A. (1990). Relationship between biofilms and corrosion of steel by microbial contaminants of cutting oil emulsions. International Biodeterioration, 26 (5), 315–326.Google Scholar
  58. Pope, D.H. (1986). A study of microbiologically influenced corrosion in nuclear power plants and a practical guide for countermeasures. Electric Power Research Institute. Final Report EPRI NP-4582s. Palo Alto, CA.Google Scholar
  59. Pope, D.H. (1990). Development of methods to detect sulfate-reducing bacteria - Agents of microbiologically influenced corrosion; Publication no. 37, Materials Technology Institute of the Chemical Process Industries, Inc., St. Louis, MO.Google Scholar
  60. Pope, D.H., Soracco, R.J., and Wilde, E.W. (1982). Studies on biologically induced corrosion in heat exchanger systems at the Savannah River Plant, Aiken, SC. Mat. Perf., 21 (7), 43–50.Google Scholar
  61. Pope, D.H., Duquette, D., Wayner, P.C. and Johannes, A.H. (1989). The case for microbiologically influenced corrosion of stainless steels. In: Microbiologically Influenced Corrosion: A State-of-the-Art Review, second edition, Publication 13, Materials Technology Institute of t h e Chemical Process Industries, Inc. Columbus. Ohio.Google Scholar
  62. Prasad, R. (1988). Pros and cons of ATP measurement in oil field waters, Corrosion/88, paper no. 87, Houston, NACE.Google Scholar
  63. Ringas, C., and Robinson, F.P.A. (1988a). Corrosion of stainless steel by sulfate-reducing bacteria. Electrochemical Techniques. Corrosion, 44 (6), 386–396.CrossRefGoogle Scholar
  64. Ringas, C., and Robinson, F.P.A. (1988b). Corrosion of stainless steel by sulfate-reducing bacteria–Total immersion test results. Corrosion, 44 (9), 671–678.Google Scholar
  65. Salvago, G., Taccani, G., and Fumagalli, G. (1991a). Electrochemical approach to biofilms monitoring. In: Microbially Influenced Corrosion and Biodeterioration, 5/ pp. 1–7 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  66. Salvago, G., Taccani, G., Fumagalli, G., and Galelli, L. (1991b). Acidification effects on the electrochemical behaviour of stainless steel in seawater. In: Microbially Influenced Corrosion and Biodeterioration, 8/ pp.5–11 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  67. Scott, P.J.B., and Davies, M. (1989). Microbiologically influenced corrosion of high molybdenum austenitic stainless steel. Corrosion/89, paper no. 186, Houston, NACE.Google Scholar
  68. Scott, P.J.B., Goldie, J., and Davies, M. (1991). Ranking alloys for susceptibility to MIC - A preliminary report on high-Mo alloys. Mat. Perf., 30 (1), 5557.Google Scholar
  69. Scotto, V., di Cintio, R., and Marcenaro, G. (1985). The influence of marine aerobic microbial film on stainless steel corrosion behaviour. Cor. Sci., 25 (3), 185–194.CrossRefGoogle Scholar
  70. Scotto, V., Alabiso, G., and Marcenaro, G. (1986). The behaviour of stainless steels in natural seawater. In: Bioelectrochemistry and Bioenergetics, 16, 347–355.Google Scholar
  71. Silva, A.J.N., Tanis, J.N., Silva, J.O., and Silva, R.A. (1986). Alcohol industry biofilms and their effect on corrosion of 304 stainless steel. In: Biologically Induced Corrosion, pp. 76–82 (S.C. Dexter, ed.), NACE-8, International Corrosion Conference Series, Houston, NACE.Google Scholar
  72. Silva, R.A., and Videla, H.A. (1989). A corrosao microbiológica e sua relacao corn a presenca de biofilmes en metais e ligas de use industrial. Proc. 3rd Iberoamerican Congress of Corrosion and Protection–Brazilian Corrosion Congress/89, pp. 1580–1592. Río de Janeiro, Brazil.Google Scholar
  73. Sinha, U.P., Wolfram, J.H., and Rogers, R.D. (1991). Microbially influenced corrosion of stainless steels in nuclear power plants. In: Microbially Influenced Corrosion and Biodeterioration, 4/ pp.51–60 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville.Google Scholar
  74. Stein, A.A. (1991). Metallurgical factors affecting the resistance of 300 series stainless steels to microbiologically influenced corrosion. Corrosion/91, paper no. 107, Houston, NACE.Google Scholar
  75. Stoecker, J.G., and Pope, D.H. (1986). Study of biological corrosion in high temperature demineralized water. Mat. Perf., 25 (6), 51–56.Google Scholar
  76. Tatnall, R.E. (1981). Fundamentals of Bacteria Induced Corrosion. Materials Performance, 20 (9), 32–38.Google Scholar
  77. Tatnall, R.E. (1991). New perspectives on testing for sulfate reducing bacteria. In: Microbially Influenced Corrosion and Biodeterioration, 5/ pp.17–32 ( N.J. Dowling, M.W. Mittleman and J.C. Danko, eds.), The University of Tennessee, Knoxville, TN.Google Scholar
  78. Varjonen, O., Hakkarainen, T., Nurmiaho-Lassila, E., and Salkinoja-Salonen, M. (1988). The brackish water biofilm on stainless steels: an electrochemical and morphological study. In: Microbial Cor. 1, pp. 164–178 ( C.A.C. Sequeira and A.K. Tiller, eds.), Elsevier Applied Science, London.Google Scholar
  79. Varjonen, O.A., Hakkarainen, T.J., and Marmo, S.A. (1991). Observations on biofilms and corrosion resistance of stainless steels in paper machine environments. Corrosion/91, paper no. 190, Houston, NACE.Google Scholar
  80. Videla, H.A. (1989a). Metal dissolution/redox in biofilms. In: Structure and Function of Biofilms, pp. 301–320 ( W.G.Characklis and P.A.Wilderer, eds.), John Wiley & Sons, Ltd, Chichester, UK.Google Scholar
  81. Videla, H.A. (1989b). Biological corrosion and biofilm effects on metal biodeterioration. In: Biodeterioration Research 2, pp.39–50 ( C.E. O’Rear and G.C. Llewellyn, eds.), Plenum Press, New York.Google Scholar
  82. Videla, H.A. (1991). Microbially induced corrosion: an updated overview. In: Biodeterioration and Biodegradation 8, pp. 63–88 ( H.W.Rossmoore, ed.), Elsevier Applied Science, London.Google Scholar
  83. Videla, H.A., Mele, M.F.L. de, and Brankevich, G. (1987). Microfouling of several metal surfaces in polluted sea water and its relation with corrosion. Corrosion/87, paper no. 365, Houston, NACE.Google Scholar
  84. Videla, H.A., Mele, M.F.L. de, and Brankevich, G. (1989). Biofouling and corrosion of stainless steel and 70/30 copper - nickel samples after several weeks of immersion in seawater. Corrosion/89, paper no. 291, Houston, NACE.Google Scholar
  85. Videla, H.A., Mele, M.F.L., Silva, R.A., Bianchi, F., and Gonzales Canales, C. (1990). A practical approach to the study of the interaction between biofouling and passive layers on mild steel and stainless steel in cooling water. Corrosion/90, paper no. 124, Houston, NACE.Google Scholar
  86. Videla, H.A., Guiamet, P.S., Pardini, O.R., Echarte, E., Trujillo, D., and Freitas, M.M.S. (1991). Monitoring biofilms and MIC in an oilfield water injection system. Corrosion/91, paper no. 103, Houston, NACE.Google Scholar
  87. Ward, G.L., and Anderson, S. (1991). MIC and corrosion of service water system materials. Corrosion/91, paper no. 278, Houston, NACE.Google Scholar
  88. Wagner, P. (1992). Investigations of MIC using environmental scanning electron microscopy. Corrosion/92, paper no. 185, Houston, TX.Google Scholar
  89. Webster, B.J., Newman, R.C., and Kelly, R.G. (1991). SRB-Induced localized corrosion of stainless steels. Corrosion/91, paper no. 106, Houston, NACE.Google Scholar
  90. Weimer, P.J., and Ng, T.K. (1988). Use of two-stage continuous culture to assess biocorrosion by sulfate-reducing bacteria. Corrosion/88, paper no. 90, Houston, NACE.Google Scholar
  91. Zamanzadeh, M., O’Connor, K., and Bavarian, B. (1989). Case histories of corrosion problems in waste-water facilities. Mat. Perf., 28 (9), 43–48.Google Scholar
  92. Zhang, X., Buchanan, R.A., Stansbury, E.E., and Dowling, N.J.E. (1989). Electrochemical responses of structural materials to microbially influenced corrosion. Corrosion/89, paper no. 512, Houston, NACE.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • D. A. Moreno
    • 1
  • J. R. Ibars
    • 1
  • C. Ranninger
    • 1
  • M. F. L. De Mele
    • 2
  • H. A. Videla
    • 2
  1. 1.Departamento de Ingeniería y Ciencia de Materiales, Escuela Técnica Superior de Ingenieros IndustrialesUniversidad Politécnica de MadridMadridSpain
  2. 2.Bioelectrochemistry Section, INIFTAUniversity of La PlataLa PlataArgentina

Personalised recommendations