Molecular Genetic Criteria for the Identification of Atypical Toxigenic Fusarium Strains

  • Antonio Logrieco
  • Giuseppina Mule
  • Antonio Bottalico
  • Stephen W. Peterson
  • Antonio Evidente
Part of the Biodeterioration Research book series (BIOR, volume 4)


Several systems for Fusarium taxonomy can be adopted to species identification, and to define different numbers of taxa (Wollenweber and Reinking, 1935; Snyder and Hansen, 1945; Booth, 1971; Gerlach and Nirenberg, 1982; Nelson et al., 1983). However, these taxonomic systems not always agree on species limits, and character variability in species as well as the loss of characters which sometimes occurs during laboratory cultivation of strains, also make identification difficult. Correct identification is important because many species are plant pathogens and certain isolates produce potent mycotoxins (Booth, 1971; Nelson et al., 1981). Moreover, culture conditions and frequent subculturing of the strains can lead to degeneration of morphological features or loss of toxigenic capability. In fact, Marasas et al. (1984) examined several reported toxigenic isolates of Fusarium species todetermine the relationship among species identity and mycotoxin production, and found a number of strains with atypical morphological features which prevented the identification of those strains. To this regard, molecular genetic and chemotaxonomic methods of systematic analysis can provide useful data concerning the relatedness of fungal strains (Kurtzman, 1985; Frisvad and Filtenborg, 1983).


Fusarium Species Centraalbureau Voor Rhizopus Arrhizus Fusarium Strain Atypical Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Booth, C. (1971). The Genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, England.Google Scholar
  2. Bottalico, A., Logrieco, A., and Visconti, A. (1989). Fusarium species and their mycotoxins in infected cereals in the field and in stored grains, In: Fusarium - Mvcotoxins, Taxonomy and Pathogenicity, pp. 85–119 ( J. Chelkowski, ed.), Elsevier, Amsterdam.Google Scholar
  3. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., and Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched inribonuclease. Biochemistry, 18, 5294–5299.CrossRefGoogle Scholar
  4. Cole, R.J., and Cox, R.H. (1981). Handbook of Toxic Fungal Metabolites, 937 p. Academic Press, New York.Google Scholar
  5. Ellis, J.J. (1988). Section Liseola of Fusarium. Mycologia, 80, 255–258.CrossRefGoogle Scholar
  6. Frisvad, J.C. and Filtenborg, O. (1983). Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl. Environ. Microbiol., 46, 1301–1310.Google Scholar
  7. Guadet, J., Julien, J., Lafay, J.-F., and Brygoo, Y. (1989). Phylogeny of some Fusarium species determined by large-subunit rRNA sequence comparison. Mol. Biol. Evol., 6, 227–242.Google Scholar
  8. Georgiev, 0.1., Nikolaev, N., Hadjiolov, A.A., Skryabin, K.G., Zakharyev, V.M., and Bayev, A.A. (1981). The structure of yeast ribosomal RNA genes. 4. Complete sequence of the 25S rRNA gene from Saccharomyces cerevisiae. Nucleic Acid Res., 9, 6953–6958.CrossRefGoogle Scholar
  9. Gerlach, W., and Nirenberg, H. (1982). The genus Fusarium-a pictorial atlas. Mitt. Biol. Bundesanst. Land-Forstwirt. Berlin-Dahlem 209, 1–406.Google Scholar
  10. Guèho, E., Kurtzman, C.P., and Peterson, S.W. (1990). Phylogenetic relationships among species of Sterigmatomyces and Fellomyces as determined from partial rRNA sequences. Int. J. Svst. Bacteriol., 40, 60–65.CrossRefGoogle Scholar
  11. Hassouna, N., Michot, B., and Bachellerie, J.-P. (1984). The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucl. Acid. Res., 12, 3563–3583.CrossRefGoogle Scholar
  12. Hughes, S.J. (1953). Conidia, conidiophores and classification. Canad. J. Bot., 31, 577–659.CrossRefGoogle Scholar
  13. Kurtzman, C.P. (1985). Molecular taxonomy of the fungi. In: Gene Manipulations in Fungi, pp. 35–63 ( J.W. Bennett and L.L. Lasure, eds.), Academic Press, Orlando.Google Scholar
  14. Kurtzman, C.P., Smiley, M.J., Johnson, C.J., Wickerham, L.J., and Fuson, G.B. (1980). Two new and closely related heterothallic species, Pichia amvloohvla and Pichia mississiooiensis: Characterization by hybridization and deoxyribonucleic acid reassociations. Int. J. Syst. Bacteriol., 30, 208–216.CrossRefGoogle Scholar
  15. Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L. and Pace, N.R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Nat. Acad. Sci. USA, 82, 6955–6959.CrossRefGoogle Scholar
  16. Logrieco, A., Peterson, S.W., and Bottalico, A. (1991). Phylogenetic affinities of the species in Fusarium section Soorotrichiella. Exiler. Mvcol., 15, 174–179.Google Scholar
  17. Marasas, W.F.O., Nelson, P.E., and Toussoun, T.A. (1984). Toxigenic Fusarium species: Identity and Mycotoxicology, 328 p. Pennsylvania State University Press, University Park.Google Scholar
  18. Nachmias, A., Solei Barash, Z., and Strobel, G.A. (1977). Purifications and characterization of phytotoxin produced by Phoma tracheiphila, the causal agent of mal secco of citrus. Phvsiol. PI. Path., 10, 147–157.CrossRefGoogle Scholar
  19. Nelson, P.E., Toussoun, T.A., and Cook, R.J. (1981). Fusarium: Disease, Biology, and Taxonomy, 459 p. Pennsylvania State University Press, University Park.Google Scholar
  20. Nelson, P.E., Toussoun, T.A., and Marasas, W.F.O. (1983). Fusarium Species: An Illustrated Manual for Identification, 193 p. Pennsylvania state University Press, University Park.Google Scholar
  21. Peterson, S.W., and Logrieco, A. (1991). Ribosomal RNA sequence variation among interfertile strains of some Gibberella species. Mycologia, 83 (4), 397–402.CrossRefGoogle Scholar
  22. Sanger, R., Nicklen, S., and Coulson, A.R., (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. USA, 74, 5463–5467.CrossRefGoogle Scholar
  23. Seidler, R.J. and Mandel, M. (1971). Quantitative aspects of DNA renaturation: DNA base composition, state of chromosome replication, and polynucleotide homologies. J. Bacteriol., 106, 608–614.Google Scholar
  24. Seidler, R.J., Knittel, M.D., and Brown, C. (1975). Potential pathogens in the environment. Cultural reactions and nucleic acid studies on Klebsiella pneumoniae from chemical and environmental sources. Appl. Microbiol., 29, 819–825.Google Scholar
  25. Snyder, W.C., and Hansen, H.N. (1945). The species concept in Fusarium with reference to discolor and other sections. Amer. J. Bot., 32, 657–666.CrossRefGoogle Scholar
  26. Thrane, U. (1989). Fusarium species and their specific profilesofsecondary metabolites, In: Fusarium Mycotoxins, Taxonomy, and Pathogenicity, pp.199–225 ( J. Chelkowski, ed.), Elsevier, Amsterdam.Google Scholar
  27. Wickerham, L.J. (1951). Taxonomy of yeasts. U.S. Dept. Agric. Tech. Bull., 1029, 1–56.Google Scholar
  28. Woese, C.R. (1987). Bacterial evolution. Microbiol. Rev., 51, 221–271.Google Scholar
  29. Wollenweber, H.W., and Reinking O.A. (1935). Die Fusarien, ihre Beschreibung, Schadwirking und Bekämpfung, 355 p. Paul Parey, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Antonio Logrieco
    • 1
  • Giuseppina Mule
    • 1
  • Antonio Bottalico
    • 2
  • Stephen W. Peterson
    • 3
  • Antonio Evidente
    • 4
  1. 1.Istituto Tossine e Micotossine da Parassiti VegetaliConsiglio Nazionale delle RicercheBariItaly
  2. 2.Istituto di Patologia vegetaleUniversità degli StudiSassariItaly
  3. 3.Northern Regional Research CenterPeoriaUSA
  4. 4.Dipartimento di Scienze AgrarieUniversità degli StudiPorticiItaly

Personalised recommendations