Biodegradation of Nitrated Munition Compounds and Herbicides by Obligately Anaerobic Bacteria

  • Ronald L. Crawford
Part of the Environmental Science Research book series (ESRH, volume 49)


Research performed during the 1970s (15, 18) generally indicated that complete biomineralization of 2,4,6-trinitrotoluene (TNT) and similar highly nitrated compounds did not occur. Biological reductions (R-NO2 → R-NO → R-NHOH → R-NH2) and polymerization reactions appeared to occur, but actual degradation of aromatic nuclei was not observed. However, this work involved studies of aerobic systems such as activated sludge and thermophilic composts, and pure cultures of aerobic fungi and bacteria such as pseudomonads. Pure cultures of some anaerobic bacteria such as Veillonella alcalescens (35) were examined, with similar results. Boopathy and Kulpa (2) recently isolated a Desulfovibrio that used TNT as a sole source of nitrogen, producing toluene as an end product. A Pseudomonas that produced dinitrotoluene, mononitrotoluene, and toluene from TNT, perhaps by hydride additions, was isolated by Duque et al. (10). These are still incomplete degradations of the parent molecule. Since the Desulfovibrio strain required obligately anaerobic conditions to produce toluene from TNT, and the Pseudomonas did so aerobically, the TNT transformation process may be mechanistically different in the two microorganisms. This should be a fruitful area for future research.


Nitroaromatic Compound Nitro Aromatic Compound Clostridium Strain Volatile Organic Acid Obligately Anaerobic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boopathy, R. Transformation of nitroaromatic compounds by a methanogenic bacterium Methanococcus sp. (strain B). Arch Microbiol. 162:167-172.Google Scholar
  2. 2.
    Boopathy, R., and C. F. Kulpa. 1992. Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate reducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic digester. Curr. Microbiol. 25:235–241.PubMedCrossRefGoogle Scholar
  3. 3.
    Boopathy, R., and C. F. Kulpa. 1993. Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain). Can. J. Microbiol. 39:430–433.PubMedCrossRefGoogle Scholar
  4. 4.
    Boopathy, R., and C. F. Kulpa. 1994. Biotransformation of 2,4,6-trinitrotoluene (TNT) by a Methanococcus sp. (strain B) isolated from a lake sediment. Can. J. Microbiol. 40:273–278.PubMedCrossRefGoogle Scholar
  5. 5.
    Boopathy, R., C. F. Kulpa, and M. Wilson. 1993. Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl. Microbiol. Biotechnol. 39:270–275.CrossRefGoogle Scholar
  6. 6.
    Boopathy, R., J. Manning, C. Montemagno, and C. F. Kulpa. 1994. Metabolism of 2,4,6-trinitrotoluene (TNT) by soil bacteria isolated from TNT-contaminated soil. Biores. Technol. 47:19–24.CrossRefGoogle Scholar
  7. 7.
    Boopathy, R., M. Wilson, and C. F. Kulpa. 1993. Anaerobic removal of 2,4,6-trinitrotoluene under different electron-accepting conditions: laboratory study. Wat. Environ. Res. 65:271–275.CrossRefGoogle Scholar
  8. 8.
    Cato, P. E., W. L. George, and S. M. Finegold. 1986. The clostridium, p. 1141–1200. In P. H. A. Sneath (ed.), Bergey’s manual of systematic bacteriology, vol. 2. Williams & Wilkins, Baltimore.Google Scholar
  9. 9.
    Crossley, K. M., D. J. Roberts, R. H. Kaake, R. L. Crawford and D. L. Crawford. Effects of bioremediation on the microbial population of a soil contaminated with dinoseb. Submitted for publication.Google Scholar
  10. 10.
    Duque, E., A. Haïdour, F. Godoy, and J. L. Ramos. 1993. Construction of a Pseudomonas hybrid that mineralizes 2,4,6-trinitrotoluene. J. Bact. 175:2278–2283.PubMedGoogle Scholar
  11. 11.
    Fedorak, P. M., J. M. Foght, and W. S. Westlake. 1982. A method for monitoring mineralization of 14C-labeled compounds in aqueous samples. Water Res. 16:1285–1290.CrossRefGoogle Scholar
  12. 12.
    Funk, S. B., D. J. Roberts, D. L. Crawford, and R. L. Crawford. 1993. Degradation of trinitrotoluene (TNT) and sequential accumulation of metabolic intermediates by an anaerobic bioreactor during its adaptation to a TNT feed, abstr. Q 410, p. 421. Abstr. Annu. Meet. Am. Soc. Microbiol. 1993.Google Scholar
  13. 13.
    Funk, S. B., D. J. Roberts, D. L. Crawford, and R. L. Crawford. 1993. Initial phase optimization for bioremediation of munition-compound-contaminated soils. Appl. Environ. Microbiol. 59:2171–2177.PubMedGoogle Scholar
  14. 14.
    Gorontzy, T., J. Kuver, and K. H. Blotevogel. 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139:1331–1336.PubMedCrossRefGoogle Scholar
  15. 15.
    Higson, F. K. 1992. Microbial degradation of nitroaromatic compounds. In S. L. Neidleman and A. I. Laksin (ed.), Advances in applied microbiology, vol 37. Academic Press, New York.Google Scholar
  16. 16.
    Kaake, R. H., D. J. Roberts, T. O. Stevens, R. L. Crawford, and D. L. Crawford. 1992. Bioremediation of soils contaminated with 2-sec-butyl-4,6-dinitrophenol (dinoseb). Appl. Environ. Microbiol. 58:1683–1689.PubMedGoogle Scholar
  17. 17.
    Kaake, R. H., D. L. Crawford, and R. L. Crawford. 1994. Optimization of an anaerobic bioremediation process for soil contaminated with the nitroaromatic herbicide dinoseb (2-sec-butyl-4,6-dinitrophenol), p. 337–341. In R. E. Hinchee, D. B. Anderson, F. B. Metting Jr., and G. D. Sayles (ed.), Applied biotechnology for site remediation. Lewis Publishers, Boca Raton.Google Scholar
  18. 18.
    Kaplan, D. L. 1992. Biological degradation of explosives and chemical agents. Curr. Opin. Biotechnol. 3:253–260.CrossRefGoogle Scholar
  19. 19.
    Kuhn, K., T. Townsend, and J. Suflita. 1990. Effect of sulfate and organic supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl. Environ. Microbiol. 56:2630–2637.PubMedGoogle Scholar
  20. 20.
    Lovley, D. and D. Lonergan. 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing microorganism GS-15. Appl. Environ. Microbiol. 56:1858–1864.PubMedGoogle Scholar
  21. 21.
    Lovley, D., M. Baedecker, D. Lonergan, I. Cozzarelli, E. Phillips, and D. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299.CrossRefGoogle Scholar
  22. 22.
    McCormick, N. G., J. H. Cornell, and A. M. Kaplan. 1981. Biodegradation of hexahydro-l,3,5-trinitro-1,3,5-triazine. Appl. Environ. Microbiol. 42:817–823.PubMedGoogle Scholar
  23. 23.
    McCormick, N., F. E. Feeherry, and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31:949–958.PubMedGoogle Scholar
  24. 24.
    Naumova, P. R., S. Y. Selivanovskay, and F. A. Mingatina. 1986. Possibility of deep bacterial destruction of 2,4,6-trinitrotoluene. Mikrobiologiya 57:218–222.Google Scholar
  25. 25.
    Preuss, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.PubMedCrossRefGoogle Scholar
  26. 26.
    Rafii, F., W. Franklin, R. H. Heflich, and C. E. Cerniglia. 1991. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl. Environ. Microbiol. 57:962–968.Google Scholar
  27. 27.
    Regan, K. M., and R. L. Crawford. Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and l,3,5-triaza-l,3,5-trinitrocyclohexane (RDX). Biotechnol. Lett. In press.Google Scholar
  28. 28.
    Shin, K.-R., S. B. Funk, and D. L. Crawford. Treatment of TNT-contaminated soil by inoculation with a Clostridium sp. Submitted for publication.Google Scholar
  29. 29.
    Stevens, T. O., R. L. Crawford, and D. L. Crawford. 1990. Biodegradation of dinoseb (2-sec-butyl-4,6-dinitrophenol) in several Idaho soils with various dinoseb exposure histories. Appl. Environ. Microbiol. 56:133–139.PubMedGoogle Scholar
  30. 30.
    Stevens, T. O., R. L. Crawford, and D. L. Crawford. 1991. Selection and isolation of bacteria capable of degrading dinoseb (2-sec-butyl-4,6-dinitrophenol). Biodegradation 2:1–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Tschech, A., and B. Schink. 1988. Methanogenic degradation of anthranilate (2-aminobenzoate). Syst. Appl. Microbiol. 11:9–12.CrossRefGoogle Scholar
  32. 32.
    U.S. Environmental Protection Agency. 1994. Demonstration of the J. R. Simplot ex-situ bioremediation technology for treatment of nitroaromatic contaminants at the Weldon Spring Ordnance works site in Weldon Spring, Missouri: TNT. March 1994.Google Scholar
  33. 33.
    U.S. Environmental Protection Agency. 1994. Ex-situ anaerobic bioremediation system: dinoseb. EPA Superfund Innovative Technology Evaluation Demonstration Bulletin. EPA/540/MR-94/508. April 1994.Google Scholar
  34. 34.
    Walker, J. E., and D. L. Kaplan. 1992. Biological degradation of explosives and chemical agents. Biodegradation 3:369–385.CrossRefGoogle Scholar
  35. 35.
    Woolfolk, C. A. 1963. Ph.D. dissertation. University of Washington, Seattle.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ronald L. Crawford
    • 1
  1. 1.Center for Hazardous Waste Remediation Research and Dept. of Microbiology, Molecular Biology, and BiochemistryUniversity of IdahoMoscowUSA

Personalised recommendations