Bacterial Degradation of Nitroaromatic Compounds under Aerobic Conditions

  • Jim C. Spain
Part of the Environmental Science Research book series (ESRH, volume 49)


During the past 20 years there have been numerous reports of biotransformation of nitroaromatic compounds. However, surprisingly few instances of complete degradation or utilization as growth substrates by microorganisms have been reported. This seems to be primarily due to the ability of many microorganisms to catalyze the nonspecific reduction of the nitro group and formation of amino derivatives or condensation products that are resistant to further microbial attack (26). Recently, several strains of aerobic bacteria have been isolated by selection for the ability to use nitroaromatic compounds as a source of carbon or nitrogen. This chapter will focus on the metabolic strategies used by these strains for degradation of nitroaromatic compounds.


Nitro Group Bacterial Degradation Nitroaromatic Compound Nitro Aromatic Compound Naphthalene Dioxygenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anlezark, G. M., R. G. Melton, R. F. Sherwood, B. Coles, F. Friedlos and R. Knox. 1992. The bioactivation of 5-(aziridin-l-YL)-2,4-dinitrobenzamide (CB1954)-1. Purification and properties of a nitroreductase enzyme from E. coli — a potential enzyme for antibody-directed enzyme prodrug therapy (ADEPT). Biochem. Pharmacol. 44:2289–2295.PubMedCrossRefGoogle Scholar
  2. 2.
    Bachofer, R., F. Lingens and W. Schäfer. 1975. Conversion of aniline into pyrocatechol by a Nocardia sp.: Incorporation of oxygen-18. FEBS Lett. 50:288–290.PubMedCrossRefGoogle Scholar
  3. 3.
    Boopathy, R. and C. F. Kulpa. 1993. Nitroaromatic compounds serve as nitrogen source for Desulfovibrio sp. (B strain). Can. J. Microbiol. 39:430–433.PubMedCrossRefGoogle Scholar
  4. 4.
    Brilon, C, W. Beckmann and H. Knackmuss. 1981. Catabolism of naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl. Environ. Microbiol. 42:44–55.PubMedGoogle Scholar
  5. 5.
    Cartwright, N. J. and R. B. Cain. 1959. Bacterial degradation of nitrobenzoic acids. Biochem. J. 71:248–261.PubMedGoogle Scholar
  6. 6.
    Corbett, M. D. and B. R. Corbett. 1981. Metabolism of 4-chloronitrobenzene by the yeast Rhodosporidium sp. Appl. Environ. Microbiol. 41:942–949.PubMedGoogle Scholar
  7. 7.
    Delgado, A., M. G. Wubbolts, M.-A. Abril and J. L. Ramos. 1992. Nitroaromatics are substrates for the TOL plasmid upper-pathway enzymes. Appl. Environ. Microbiol. 58:415–417.PubMedGoogle Scholar
  8. 8.
    Dickel, O. and H.-J. Knackmuss. 1991. Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Arch. Microbiol. 157:76–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Ecker, S., H.-J. Knackmuss and C. Bruhn. 1989. Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP222, abstr. Q-198, p. 168. In Abstr. Annu. Meet. Am. Soc. Microbiol. 1989.Google Scholar
  10. 10.
    Ecker, S., T. Widmann, H. Lenke, O. Dickel, P. Fischer, C. Bruhn and H.-J. Knackmuss. 1992. Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP134 and JMP222. Arch. Microbiol. 158:149–154.CrossRefGoogle Scholar
  11. 11.
    Fetzner, S., R. Muller and F. Lingens. 1989. A novel metabolite in the microbial degradation of 2-chlorobenzoate. Biochemical and Biophysical Research Communications. 161:700–705.PubMedCrossRefGoogle Scholar
  12. 12.
    Gibson, D. T. and V. Subramanian. 1984. Microbial degradation of aromatic hydrocarbons, p. 181–252. In Gibson, D. T. (ed.), Microbial degradation of organic compounds. Marcel Dekker, Inc. New York.Google Scholar
  13. 13.
    Groenewegen, P. E. J., P. Breeuwer, J. M. L. M. van Helvoort, A. A. M. Langenhoff, F. P. de Vries and J. A. M. de Bont. 1992. Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J. Gen. Microbiol. 138:1599–1605.PubMedCrossRefGoogle Scholar
  14. 14.
    Groenewegen, P. E. J. and J. A. M. de Bont. 1992. Degradation of 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate in Comamonas acidovorans NBA-10. Arch. Microbiol. 158:381–386.CrossRefGoogle Scholar
  15. 15.
    Haigler, B. E., S. F. Nishino and J. C. Spain. 1994. Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J. Bacteriol. 176:3433–3437.PubMedGoogle Scholar
  16. 16.
    Haigler, B. E. and J. C. Spain. 1993. Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol. 59:2239–2243.PubMedGoogle Scholar
  17. 17.
    Haigler, B. E., W. H. Wallace and J. C. Spain. Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42. Appl. Environ. Microbiol. 60:3466-3469.Google Scholar
  18. 18.
    Hanne, L. F., L. L. Kirk, S. M. Appel, A. D. Narayan and K. K. Bains. 1993. Degradation and induction specificity in actinomycetes that degrade p-nitrophenol. Appl. Environ. Microbiol. 59:3505–3508.PubMedGoogle Scholar
  19. 19.
    Harpel, M. R. and J. D. Lipscomb. 1990. Gentisate-l,2-dioxygenase from Pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J. Biol. Chem. 265:6301–6311.PubMedGoogle Scholar
  20. 20.
    Higson, F. K. 1992. Microbial degradation of nitroaromatic compounds. Adv. Appl. Microbiol. 37:1–19.PubMedCrossRefGoogle Scholar
  21. 21.
    Jain, R. K., J. H. Dreisbach and J. C. Spain. Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter. Appl. Environ. Microbiol. 60:3030-3032.Google Scholar
  22. 22.
    Kataeva, I. A. and L. A. Golovleva. 1990. Catechol 2,3-dioxygenases from Pseudomonas aeruginosa 2x. Meth. Enzymol. 188:115–121.PubMedCrossRefGoogle Scholar
  23. 23.
    Kato, R., T. Oshima and A. Takanaka. 1969. Studies on the mechanism of nitroreduction by rat liver. Mol. Pharmacol. 5:487–498.PubMedGoogle Scholar
  24. 24.
    Lenke, H. and H.-J. Knackmuss. 1992. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl. Environ. Microbiol. 58:2933–2937.PubMedGoogle Scholar
  25. 25.
    Marcus, A., U. Klages, S. Krauss and F. Lingens. 1984. Oxidation and dehalogenation of 4-chlorophenylacetate by a two component enzyme system from Pseudomonas sp. strain CBS3. J. Bacteriol. 160:618–621.Google Scholar
  26. 26.
    McCormick, N. G., F. F. Feeherry and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31:949–958.PubMedGoogle Scholar
  27. 27.
    Mitra, D. and Vaidyanathan. 1984. A new 4-nitrophenol 2-hydroxylase from a Nocardia sp. Biochem. Internat. 8:609–615.Google Scholar
  28. 28.
    Munnecke, D. M. and D. P. H. Hsieh. 1974. Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl. Microbiol. 28:212–217.PubMedGoogle Scholar
  29. 29.
    Nadeau, L. J. and J. C. Spain. 1994. The bacterial degradation of m-nitrobenzoic acid, abstr. Q-114, p. 408. In Abstr. Annu. Meet. Am. Soc. Microbiol. 1994.Google Scholar
  30. 30.
    Nishino, S. F. and J. C. Spain. 1992. Initial steps in the bacterial degradation of 1,3-dinitrobenzene, abstr. Q-135, p. 358. In Abstr. 92nd Annu. Meet. Am. Soc. Microbiol. 1992.Google Scholar
  31. 31.
    Nishino, S. F. and J. C. Spain. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59:2520–2525.PubMedGoogle Scholar
  32. 32.
    Nishino, S. F. and J. C. Spain. Oxidative pathway for the biodégradation of nitrobenzene by a Comamonas sp. strain JS765. Appl. Environ. Microbiol. In press.Google Scholar
  33. 33.
    Orna, M. V. and R. P. Mason. 1989. Correlation of kinetic parameters of nitroreductase enzymes with redox properties of nitroaromatic compounds. J. Biol. Chem. 264:12379–12384.PubMedGoogle Scholar
  34. 34.
    Preuss, A., J. Fimpel and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.PubMedCrossRefGoogle Scholar
  35. 35.
    Que, L. 1978. Extradiol cleavage of o-aminophenol by pyrocatechase. Biochem. Biophys. Res. Commun. 84:123–129.PubMedCrossRefGoogle Scholar
  36. 36.
    Raymond, D. G. M. and M. Alexander. 1971. Microbial metabolism and cometabolism of nitrophenols. Pest. Biochem. Physiol. 1:123–130.CrossRefGoogle Scholar
  37. 37.
    Reiner, A. M. 1972. Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-l,2-diol-l-carboxylic acid (NAD+) oxidoreductase (decarboxylating). J. Biol. Chem. 247:4960–4965.PubMedGoogle Scholar
  38. 38.
    Rhys-Williams, W., S. C. Taylor and P. A. Williams. 1993. A novel pathway for the catabolism of 4-nitrotoluene by Pseudomonas. J. Gen. Microbiol. 139:1967–1972.PubMedCrossRefGoogle Scholar
  39. 39.
    Sander, P., R.-M. Wittaich, P. Fortnagel, H. Wilkes and W. Francke. 1991. Degradation of 1,2,4-trichloro-and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl. Environ. Microbiol. 57:1430–1440.PubMedGoogle Scholar
  40. 40.
    Schackmann, A. and R. Müller. 1991. Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol. 34:809–813.CrossRefGoogle Scholar
  41. 41.
    Shine, H. J. 1967. The rearrangement of phenylhydroxylamines, p. 182–190. In Aromatic Rearrangements. Elsevier Publishing Company. Amsterdam, London, New York.Google Scholar
  42. 42.
    Simpson, J. R. and W. C. Evans. 1953. The metabolism of nitrophenols by certain bacteria. Biochem. J. 55:XXIV.PubMedGoogle Scholar
  43. 43.
    Somerville, C. C., S. F. Nishino and J. C. Spain. Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. In press.Google Scholar
  44. 44.
    Sone, T., K. Hamamoto, Y. Seiji, S. Shinkai and O. Manabe. 1981. Kinetics and mechanisms of the Bamberger rearrangement. Part 4. Rearrangement of sterically hindered phenylhydroxyamines to 4-aminophenols in aqueous sulphuric acid solution. J. Chem. Soc. Perkin Trans. 2. 1981:1596–1598.CrossRefGoogle Scholar
  45. 45.
    Spain, J. C. and D. T. Gibson. 1991. Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol. 57:812–819.PubMedGoogle Scholar
  46. 46.
    Spain, J. C., O. Wyss and D. T. Gibson. 1979. Enzymatic oxidation of p-nitrophenol. Biochem. Biophys. Res. Commun. 88:634–641.PubMedCrossRefGoogle Scholar
  47. 47.
    Spain, J. C., G. J. Zylstra, C. K. Blake and D. T. Gibson. 1989. Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in Pseudomonas putida Fl. Appl. Environ. Microbiol. 55:2648–2652.PubMedGoogle Scholar
  48. 48.
    Spanggord, R. J., J. C. Spain, S. F. Nishino and K. E. Mortelmans. 1991. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol. 57:3200–3205.PubMedGoogle Scholar
  49. 49.
    Sternson, L. A. and R. E. Gammans. 1975. Amechanistic study of aromatic hydroxylamine rearrangement in the rat. Bioorg. Chem. 4:58–63.CrossRefGoogle Scholar
  50. 50.
    Stoltz, A., B. Nörtemann and H.-J. Knackmuss. 1992. Bacterial metabolism of 5-aminosalicylic acid. Initial ring cleavage. Biochem. J. 282:675–680.Google Scholar
  51. 51.
    Suen, W.-C., B. E. Haigler and J. C. Spain. 1994. 2,4-Dinitrotoluene dioxygenase genes from Pseudomonas sp. strain DNT: homology to naphthalene dioxygenase, abstr. Q-397, p. 458. In Abstr. Annu. Meet. Am. Soc. Microbiol. 1994.Google Scholar
  52. 52.
    Suen, W.-C. and J. C. Spain. 1993. Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation. J. Bacteriol. 175:1831–1837.PubMedGoogle Scholar
  53. 53.
    Vorbeck, C, H. Lenke, P. Fischer and H.-J. Knackmuss. 1994. Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J. Bacteriol. 176:932–934.PubMedGoogle Scholar
  54. 54.
    Wackett, L. P., L. D. Kwart and D. T. Gibson. 1988. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochem. 27:1360–1367.CrossRefGoogle Scholar
  55. 55.
    Zeyer, J. and P. C. Kearney. 1984. Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J. Agric. Food Chem. 32:238–242.CrossRefGoogle Scholar
  56. 56.
    Zeyer, J. and H. P. Kocher. 1988. Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. J. Bacteriol. 170:1789–1794.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jim C. Spain
    • 1
  1. 1.US Air Force Armstrong LaboratoryTyndall AFBUSA

Personalised recommendations