Transformation of Inorganic N-Oxides by Denitrifying and Nitrifying Bacteria

Pathways, Mechanisms, and Relevance to Biotransformation of Nitroaromatic Compounds
  • Bruce A. Averill
Part of the Environmental Science Research book series (ESRH, volume 49)


The inorganic nitrogen cycle (Fig. 1) consists of several linked biological processes and one abiological process, the reaction of N2 and O2 in lightning discharges (and internal combustion engines) to produce NOx and, ultimately, nitrate. All of the processes except nitrogen fixation involve reduction or oxidation of species containing N-O bonds of order greater than one, such as NO 3, NO 2, NO, and N2O. Except for the assimilatory reduction of nitrite to ammonium, which is a complex six-electron process that is unique in nitrogen biochemistry, the reactions of inorganic N-oxides are of potential interest as relatively well-studied paradigms that may be relevant to aspects of biological degradation of nitroaromatic compounds. One might expect the existence of analogous chemistry in the reduction of NO 2 or HNO2 and ArNO2 (where Ar is a general abbreviation for an aromatic group). Certainly both the inorganic and organic species contain nitrogen in the same oxidation state (+ 3), and they also contain two N-O bonds that possess at least partial multiple bond character.


Nitrate Reductase Nitrite Reductase Nitroaromatic Compound Ammonia Mono Oxygenase Nitrosomonas Europaea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, Z. H. L., D. J. Lowe, and B. E. Smith. 1993. Purification and characterization of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans subsp. xylosoxidans (NCIMB 11015). Evidence for the presence of both type-1 and type-2 copper centers. Biochem. J. 295:587–593.Google Scholar
  2. 2.
    Andersson, K. K., and A. B. Hooper. 1983. O2 and H2O are each the source of one O in NO 2: 15N-NMR evidence. FEBS Lett. 164:236–240.CrossRefGoogle Scholar
  3. 3.
    Arciero, D. M., A. B. Hooper, M. Cai, and R. Timkovich. 1993. Evidence for the structure of the active site heme P460 in hydroxylamino oxidoreductase of Nitrosomonas. Biochemistry 32:9370–9378.PubMedCrossRefGoogle Scholar
  4. 4.
    Carr, G. J., and S. J. Ferguson. 1990. The nitric oxide reductase of Paracoccus denitrificans. Biochem. J. 269:423–430.PubMedGoogle Scholar
  5. 5.
    Chan, S. 1., and H.-H. T. Nguyen. 1994. Insights into the nature of the copper sites in particulate methane monooxygenase from EPR and magnetic measurements, abstr. PHYS-49. Abstr. 208th Natl. Mtg. Amer. Chem. Soc., Washington, D.C.Google Scholar
  6. 6.
    Chang, C. K. 1986. The porphyrindione structure of heme d 1. J. Biol. Chem. 261:8593–8596.PubMedGoogle Scholar
  7. 7.
    Coyne, M. S., A. Arunakumari, B. A. Averill, and J. M. Tiedje. 1989. Immunological identification and distribution of dissimilatory heme cd 1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl. Environ. Microbiol. 55: 2924–2931.PubMedGoogle Scholar
  8. 8.
    Demastia, M., T. Turk, and T. C. Hollocher. 1991. Nitric oxide reductase. Purification from Paracoccus denitrificans with use of a single column and some characteristics. J. Biol. Chem. 266:10899–10905.Google Scholar
  9. 9.
    Di Spirito, A. A., L. R. Taaffe, J. D. Lipscomb, and A. B. Hooper. 1985. A “blue” copper oxidase from Nitrosomonas europaea. Biochim. Biophys. Acta 827:320–326.CrossRefGoogle Scholar
  10. 10.
    Fukuoka, M., Y. Fukumori, and T. Yamanaka. 1987. Nitrobacter winogradskyi cytochrome a 1 c 1 is an iron-sulfur molybdoenzyme having hemes a and c. J. Biochem. (Tokyo) 102:525–530.Google Scholar
  11. 11.
    Glockner, A. B., and W. G. Zumft. 1993. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cd 1-free background (Nir S) of Pseudomonas stutzen. Arch. Microbiol. 160:18–26.PubMedGoogle Scholar
  12. 12.
    Godden, J. W., S. Turley, D. C. Teller, E. T. Adman, M.-Y. Liu, W. J. Payne, and J. LeGall. 1991. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science 253:438–442.PubMedCrossRefGoogle Scholar
  13. 13.
    Heiss, B., K. Frunzke, and W. G. Zumft. 1989. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J. Bacteriol. 171:3288–3297.PubMedGoogle Scholar
  14. 14.
    Hochstein, L. L., and G. A. Tomlinson. 1988. The enzymes associated with denitrification. Ann. Rev. Microbiol. 42:231–261.CrossRefGoogle Scholar
  15. 15.
    Hollocher, T. C., M. E. Tate, and D. J. D. Nicholas. 1981. Oxidation of ammonia by Nitrosomonas europaea: Definitive 18O-tracer evidence that hydroxylamine formation involves a monoxygenase. J. Biol. Chem. 256:10834–10836.PubMedGoogle Scholar
  16. 16.
    Hooper, A. B. 1989. Biochemistry of the nitrifying lithotropic bacteria, p. 239–265. In H. G. Schlegel and B. Bowein, (ed.) Autotrophic bacteria. Science Technology Publishers, Madison.Google Scholar
  17. 17.
    Hooper, A. B., and K. R. Terry. 1973. Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bacteriol. 115:480–485.PubMedGoogle Scholar
  18. 18.
    Holm, R. H. 1990. The biologically relevant oxygen atom transfer of molybdenum. Coord. Chem. Rev. 100:183–222.CrossRefGoogle Scholar
  19. 19.
    Hulse, C. H., B. A. Averill, and J. M. Tiedje. 1989. Evidence for a coppernitrosyl intermediate in denitrification by the copper-containing nitrite reducíase of Achromobacter cycloclastes. J. Am. Chem. Soc. 111:2322–2323.CrossRefGoogle Scholar
  20. 20.
    Jackson, M. A., J. M. Tiedje, and B. A. Averill. 1992. Evidence for an NO-rebound mechanism for production of N2O from nitrite by the copper-containing nitrite reducíase from Achromobacter cycloclastes. FEBS Lett. 291:41–44.CrossRefGoogle Scholar
  21. 21.
    Kim, C. H., and T. C. Hollocher. 1984. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome cd 1). J. Biol. Chem. 259:2092–2099.PubMedGoogle Scholar
  22. 22.
    Koshland, D. E., Jr. 1992. The molecule of the year. Science 258:1861.PubMedCrossRefGoogle Scholar
  23. 23.
    Kroneck, P. M. H., W. A. Antholine, J. Riester, and W. G. Zumft. 1989. The nalure of the cupric site in nitrous oxide reductase and of Cua in cytochrome c oxidase. FEBS Lett. 248:212–213.PubMedCrossRefGoogle Scholar
  24. 24.
    Libby, E., and B. A. Averill. 1992. Evidence that the type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Biochem. Biophys. Res. Commun. 187:1529–1535.PubMedCrossRefGoogle Scholar
  25. 25.
    Lui, S. M., W. Liang, A. Soriano, and J. A. Cowan. 1994. Enzymatic reduction of inorganic anions. Variable-temperature steady-state and presteady-state kinetics experimenls to map the energy profile of an enzymatic multielectron redox reaction. Application lo the dissimilaiory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). J. Am. Chem. Soc. 116:4531–4536.CrossRefGoogle Scholar
  26. 26.
    Miller, D. J., and D. J. D. Nicholas. 1985. Characterization of a soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea. J. Gen. Microbiol. 131:2851–2854.Google Scholar
  27. 27.
    Miller, D. J., and P. M. Wood. 1983. The soluble cytochrome oxidase of Nitrosomonas europaea. J. Gen. Microbiol. 129:1645–1650.Google Scholar
  28. 28.
    Olson, L. W., D. Schaeper, D. Lancon, and K. W. Kadish. 1982. Characterization of several novel iron nitrosyl porphyrins. J. Am. Chem. Soc. 104:2042–2044.CrossRefGoogle Scholar
  29. 29.
    Shoun, H., D.-H. Kim, H. Uchiyama, and J. Sugiyama. 1992. Denitrification by fungi. FEMS Microbiol. Lett. 94:277–281.CrossRefGoogle Scholar
  30. 30.
    Traylor, T. G., and S. Sharma. 1992. Why NO? Biochemislry 31:2847–2849.CrossRefGoogle Scholar
  31. 31.
    Turk, T., and T. C. Hollocher. 1992. Oxidation of dithiolhreitol during turnover of nitric oxide reductase: evidence for generation of nitroxyl with the enzyme from Paracoccus denitrificans. Biochem. Biophys. Res. Commun. 183:983–988.PubMedCrossRefGoogle Scholar
  32. 32.
    Wood. P. M. 1988. Chemolitholropy, p. 183–230. In C. Anthony (ed.) Bacterial energy transduction. Academic Press, New York.Google Scholar
  33. 33.
    Ye, R. W., A. Arunakumari, B. A. Averill, and J. M. Tiedje. 1992. Mutants of Pseudomonas fluorescens deficieni in dissimilaiory nitrite reduction are also altered in nitric oxide reduction. J. Bacteriol. 174:2560–2564.PubMedGoogle Scholar
  34. 34.
    Ye, R. W., B. A. Averill, and J. M. Tiedje. 1992. Characterization of Tn5 mutants deficieni in dissimilaiory nilrite reduction in Pseudomonas sp. strain G179, which conlains a copper nitrite reductase. J. Bacleriol. 174:6653–6658.Google Scholar
  35. 35.
    Ye, R. W., B. A. Averill, and J. M. Tiedje. 1994. Denitrification: production and consumption of nitric oxide. Appl. Environ. Microbiol. 60:1053–1058.PubMedGoogle Scholar
  36. 36.
    Ye, R. W., I. Toro-Suarez, J. M. Tiedje, and B. A. Averill. 1991. H2 18O isotope exchange studies on the mechanism of reduction of nitric oxide and nitrite to nitrous oxide by denitrifying bacteria: evidence for an electrophilic nitrosyl during reduction of nitric oxide. J. Biol. Chem. 266:12848–12851.PubMedGoogle Scholar
  37. 37.
    Zumft, W. G. 1993. The biological role of nitric oxide in bacteria. Arch. Microbiol. 160:253–264.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Bruce A. Averill
    • 1
  1. 1.E. C. Slater InstituutUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations