Bioorganic Chemistry of the Arylhydroxylamine and Nitrosoarene Functional Groups

  • Michael D. Corbett
  • Bernadette R. Corbett
Part of the Environmental Science Research book series (ESRH, volume 49)


Arylamine and nitroaromatic chemicals make up one of the largest groups of man-made chemicals that find their way into our environment, including food, water and air. The vast majority of herbicides, the mainstay of no-till agriculture, are derivatives of these classes of compounds. Even cooking high protein foods leads to the formation of arylamine chemicals, some of which are potent mutagens and probable human carcinogens. Arylamine and nitroaromatic compounds are at either end of an oxidation/reduction equilibrium and are both relatively unreactive. Both arylamine and nitroaromatic compounds can be metabolized into the more reactive intermediates between the two, that is, the arylhydroxylamine and nitrosoarene compounds (Fig. 1). This review will focus attention on the chemistry of these arylhydroxylamine and nitrosoarene intermediates under biological conditions.


Nitro Group Hydroxamic Acid Pyruvate Decarboxylase Nitroaromatic Compound Nitroso Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, A. R., and L. A. Sternson. 1980. Nonenzymatic reduction of nitrosobenzene to phenylhydroxylamine by NAD(P)H. Bioorg. Chem. 9:305–312.CrossRefGoogle Scholar
  2. 2.
    Bernheim, M. L. C. 1972. The non-enzymic oxidation of NADH by nitrosobenzene. Biochem. Biophys. Res. Commun. 46:1598–1602.PubMedCrossRefGoogle Scholar
  3. 3.
    Boche, G., F. Bosold and S. Schröder. 1988. N-Aryl-O-acylhydroxylamines; preparation by O-acylation or N→O transacylation and reaction with amines; model reactions for key steps connected with the carcinogenicity of aromatic amines. Angew. Chem. Int. Ed. Engl. 27:973–974.CrossRefGoogle Scholar
  4. 4.
    Boche, G., R. H. Sommerlade and F. Bosold. 1986. N-Aryl-O-(diphenylphosphinoyl)hydroxylamines: electrophilic amination of amines to hydrazines; a model reaction for the carcinogenicity of aromatic amines. Angew. Chem. Int. Ed. Engl. 25:562–563.CrossRefGoogle Scholar
  5. 5.
    Bosold, F. and G. Boche. 1990. The ultimate carcinogen, O-acetyl-N-2-(fluorenyl)hydroxylamine (“N-acetoxy-2-aminofluorene”), and its reaction in vitro to form 2-[N-(deoxyguanosin-8-yl)amino]fluorene. Angew. Chem. Int. Ed. Engl. 29:63–64.CrossRefGoogle Scholar
  6. 6.
    Boteju, L. W. and P. E. Hanna. 1993. Bioactivation of N-hydroxyaminofluorenes by N,O-acyltransferase: substituent effects on covalent binding to DNA. Carcinogenesis 14:1651–1657.PubMedCrossRefGoogle Scholar
  7. 7.
    Channon, H. J., G. T. Mills, and R. T. Williams. 1944. The metabolism of 2,4,6-trinitrotoluene. Biochem. J. 38:70–85.PubMedGoogle Scholar
  8. 8.
    Corbett, M. D. 1974. Hydroxamic acids from the reaction of active acetaldehyde with aromatic nitroso compounds. Bioorg. Chem. 3:361–365.CrossRefGoogle Scholar
  9. 9.
    Corbett, M. D., D. G. Baden and B. R. Chipko. 1979. The nonmicrosomal production of N-(4-chlorophenyl)-glycolhydroxamic acid from 4-chloronitrosobenzene by rat liver homogenates. Bioorg. Chem. 8:227–235.CrossRefGoogle Scholar
  10. 10.
    Corbett, M. D. and B. R. Chipko. 1977. N-Phenylglycolylhydroxamate production by the action of transketolase on nitrosobenzene. Biochem. J. 165:263–267.PubMedGoogle Scholar
  11. 11.
    Corbett, M. D., B. R. Chipko and J. H. Paul. 1978. The production of hydroxamic acid metabolites of nitrosobenzene by Chlorella pyrenoidosa. J. Environ. Path. Toxicol. 1:259–266.Google Scholar
  12. 12.
    Corbett, M. D. and B. R. Chipko. 1980. Comparative aspects of hydroxamic acid production by thiamine-dependent enzymes. Bioorg. Chem. 9:273–287.CrossRefGoogle Scholar
  13. 13.
    Corbett, M. D. and B. R. Corbett. 1980. The reaction of nitroso aromatics with glyoxylic acid: a new path to hydroxamic acids. J. Org. Chem. 45:2834–2838.CrossRefGoogle Scholar
  14. 14.
    Corbett, M. D. and B. R. Corbett. 1981. Reductive formylation of N,N-dimethyl-p-nitrosoaniline by glyoxylic acid. Evidence for a hydroxamic acid intermediate. J. Org. Chem. 46:466–468.CrossRefGoogle Scholar
  15. 15.
    Corbett, M. D. and B. R. Corbett. 1981. Metabolism of 4-chloronitrobenzene by the yeast Rhodosporidium sp. Appl. Environ. Microbiol. 41:942–949.PubMedGoogle Scholar
  16. 16.
    Corbett, M. D. and B. R. Corbett. 1982. Enzymic generation of N-[4-(dimethylamino)phenyl]acetohydroxamic acid by the action of pyruvate decarboxylase on 4-(dimethylamino)nitrosobenzene. Bioorg. Chem. 11:328–337.CrossRefGoogle Scholar
  17. 17.
    Corbett, M. D. and B. R. Corbett. 1983. Enzymatic preparation of [U-14C]-4-chloronitrosobenzene. Experientia 39:487–488.CrossRefGoogle Scholar
  18. 18.
    Corbett, M. D. and B. R. Corbett. 1985. The reactions of C-nitroso aromatics with a-oxo acids, p. 400–408. In J.W. Gorrod and L.A. Damani (ed.), Biological oxidation of nitrogen in organic molecules. Ellis Horwood, Ltd., Chichester.Google Scholar
  19. 19.
    Corbett, M. D. and B. R. Corbett. 1986. Effect of ring substituents on the transketolase catalyzed conversion of nitroso aromatics to hydroxamic acids. Biochem. Pharmacol. 35:3613–3621.PubMedCrossRefGoogle Scholar
  20. 20.
    Corbett, M. D. and B. R. Corbett. 1987. HRP-catalyzed bioactivation of carcinogenic hydroxamic acids. The greater reactivity of glycolyl-versus acetyl-derived hydroxamic acids. Chem.-Biol. Interact. 63:249–264.PubMedCrossRefGoogle Scholar
  21. 21.
    Corbett, M. D. and B. R. Corbett. 1990. Biochemical studies on the putative nitroso metabolite of chloramphenicol: a new model for the cause of aplastic anemia, p. 245–255. In P.C. Howard, S.S. Hecht and F.A. Beland (ed.), Nitroarenes: occurrence, metabolism and biological impact. Plenum Press, New York.CrossRefGoogle Scholar
  22. 22.
    Corbett, M. D. and B. R. Corbett. 1993. Studies on the nitroso-glyoxylate reaction. Relative hydroxamic acid production by glyoxylate, pyruvate, and formaldehyde in reactions with 4-nitrosobiphenyl. Chem. Res. Toxicol. 6:82–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Corbett, M. D., B. R. Corbett and A. O. Batchelor. 1980. The action of chloride peroxidase on 4-chloroaniline. Biochem. J. 187:893–903.PubMedGoogle Scholar
  24. 24.
    Corbett, M. D., B. R. Corbett and D. R. Doerge. 1982. Hydroxamic acid production and active-site induced Bamberger rearrangement from the action of a-ketoglutarate dehydrogenase on 4-chloronitrosobenzene. J. Chem. Soc. Perkin I 1982:345–350.CrossRefGoogle Scholar
  25. 25.
    Corbett, M. D., B. R. Corbett, M.-H. Hannothiaux and S. J. Quintana. 1992. The covalent binding of acetaminophen to cellular nucleic acids as the result of the respiratory burst of neutrophils derived from the HL-60 cell line. Toxicol. Appl. Pharmacol. 113:80–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Corbett, M. D., D. R. Doerge and B. R. Corbett. 1983. Hydroxamic acid production by a-ketoglutarate dehydrogenase. Part 2. Evidence for an electrophilic reaction intermediate at the enzyme active site. J. Chem. Soc. Perkin I 1983:765–769.CrossRefGoogle Scholar
  27. 27.
    Corbett, M. D., L. O. Lim, B. R. Corbett, J. J. Johnston and P. Wiebkin. 1988. Covalent binding of N-hydroxy-2-acetylaminofluorene and N-hydroxy-2-glycolylaminofluorene to rat hepatocyte DNA: In vitro and cell-suspension studies. Chem. Res. Toxicol. 1:41–46.PubMedCrossRefGoogle Scholar
  28. 28.
    Corbett, M. D., C. Wei and B. R. Corbett. 1985. Nitroreductase-dependent mutagenicity of p-nitrophenyl-hydroxylamine and its N-acetyl and N-formyl hydroxamic acids. Carcinogenesis 6:727–732.PubMedCrossRefGoogle Scholar
  29. 29.
    Cramer, J. W., J. A. Miller and E. C. Miller. 1960. A new metabolic reaction observed in the rat with the carcinogen 2-AAF. J. Biol. Chem. 235:885–888.PubMedGoogle Scholar
  30. 30.
    Doerge, D. R. and M. D. Corbett. 1985. The action of a-ketoglutarate dehydrogenase on 4-chloronitrosobenzene: evidence for species-dependent differences in active site properties. Comp. Biochem. Physiol. 80C:161–165.Google Scholar
  31. 31.
    Doerge, D. R. and M. D. Corbett. 1991. Peroxygenation mechanism for chloroperoxidase-catalyzed N-oxidation of arylamines. Chem. Res. Toxicol. 4:556–560.PubMedCrossRefGoogle Scholar
  32. 32.
    Dölle, B., W. Töpner and H.-G. Neumann. 1980. Reaction of arylnitroso compounds with mercaptans. Xenobiotica 10:527–536.PubMedCrossRefGoogle Scholar
  33. 33.
    Eyer, P. 1979. Reactions of nitrosobenzene with reduced glutathione. Chem.-Biol. Interact. 24:227–239.PubMedCrossRefGoogle Scholar
  34. 34.
    Eyer, P. 1985. Reactions of nitrosoarenes with sulphydryl groups: reaction mechanism and biological significance, p. 386–399. In J.W. Gorrod and L.A. Damani (ed.), Biological oxidation of nitrogen in organic molecules. Ellis Horwood, Ltd., Chichester.Google Scholar
  35. 35.
    Eyer, P. 1988. Detoxication of N-oxygenated arylamines in erythrocytes. Xenobiotica 18:1327–1333.PubMedCrossRefGoogle Scholar
  36. 36.
    Famulok, M., F. Bosold and G. Boche. 1989. Synthesis of N-acetoxy-2-aminonaphthalene, an ultimate carcinogen of the carcinogenic 2-naphthylamine, and its in vitro reactions with (bio)nucleophiles. Tetrahedron Lett. 30:321–324.CrossRefGoogle Scholar
  37. 37.
    Forrester, A. R. and R. H. Thomson. 1985. Reaction of quinones with nitrosoarenes. Z. Naturforsch. 40B:1515–1518.Google Scholar
  38. 38.
    Gassman, P. G. and G. A. Campbell. 1971. The mechanism of the chlorination of anilines and related aromatic amines. The Involvement of nitrenium ions. J. Amer. Chem. Soc. 93:2567–2569.CrossRefGoogle Scholar
  39. 39.
    Gassman, P. G., G. A. Campbell and R. C. Frederick. 1972. Nucleophilic aromatic substitution of anilines via aryl nitrenium ions (Anilenium Ions). J. Amer. Chem. Soc. 94:3884–3890.CrossRefGoogle Scholar
  40. 40.
    Gassman, P. G. and J. E. Granrud. 1984. Synthesis and rearrangement of methanesulfonate esters of N-hydroxyacetanilides. A model for a penultimate carcinogen. J. Amer. Chem. Soc. 106:1498–1499.CrossRefGoogle Scholar
  41. 41.
    Gassman, P. G. and J. E. Granrud. 1984. Isolation, characterization, and rearrangement of cis-and trans-N-acetyl-2-amino-5,6-dimethoxy-5-methylcyclohexa-l,3-diene. Models for the proposed precursors of meta-substituted products from carcinogenic aromatic amines. J. Amer. Chem. Soc. 106:2448–2449.CrossRefGoogle Scholar
  42. 42.
    Gilissen, R. A. H. J., D. P. Ringer, H. J. F. C. Stavenuiter, G. J. Mulder and J. H. N. Meerman. 1992. Sulfation of hydroxylamines and hydroxamic acids in liver cytosol from male and female rats and purified aryl sulfotransferase IV. Carcinogenesis 13:1699–1703.PubMedCrossRefGoogle Scholar
  43. 43.
    Gorrod, J. W. and D. Manson. 1986. The metabolism of aromatic amines. Xenobiotica 16:933–955.PubMedCrossRefGoogle Scholar
  44. 44.
    Gowenlock, B. G. and W. Lüttke. 1958. Structure and properties of C-nitroso-compounds. Quarterly Rev. 12:321–340.CrossRefGoogle Scholar
  45. 45.
    Gowenlock, B. G. and K. J. McCullough. 1989. Structure of the trans-dimer of 2,6-di-isopropylni-trosobenzene. J. Chem. Soc. Perkin Trans. II 1989:551–553.CrossRefGoogle Scholar
  46. 46.
    Groenewegen, P. E. J., P. Breeuwer, J. M. L. M. van Helvoort, A. A. M. Langenhoff, F. P. deVries and J. A. M. deBont. 1992. Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J. Gen. Microbiol. 138:1599–1605.PubMedCrossRefGoogle Scholar
  47. 47.
    Guengerich, F. P. and T. Shimada. 1991. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol. 4:391–407.PubMedCrossRefGoogle Scholar
  48. 48.
    Haigler, B. E. and J. C. Spain. 1993. Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol. 59:2239–2243.PubMedGoogle Scholar
  49. 49.
    Halliwell, B., J. M. C. Gutteridge, and C. E. Cross. 1992. Free radicals, antioxidants and human disease: where are we now. J. Lab. Clin. Med. 119:598–620.PubMedGoogle Scholar
  50. 50.
    Hanna, P. E. and R. B. Banks. 1985. Arylhydroxylamines and arylhydroxamic acids: conjugation reactions, p. 375–402. In M.W. Anders (ed), Bioactivation of foreign compounds. Academic Press, Orlando.Google Scholar
  51. 51.
    Hein, D. W. 1988. Acetylator genotype and arylamine-induced carcinogenesis. Biochim. Biophys. Acta 948:37–66.PubMedGoogle Scholar
  52. 52.
    Helmick, J. S., K. A. Martin, J. L. Heinrich and M. Novak. 1991. Mechanism of the reaction of carbon and nitrogen nucleophiles with the model carcinogens O-pivaloyl-N-arylhydroxylamines: competing SN2 substitution and SN1 solvolysis. J. Amer. Chem. Soc. 113:3459–3466.CrossRefGoogle Scholar
  53. 53.
    Helmick, J. S. and M. Novak. 1991. Nucleophilic substitution at nitrogen and carboxyl carbon of N-aryl-O-pivaloylhydroxylamines in aqueous solution: competition with SN1 solvolysis of model carcinogens. J. Org. Chem. 56:2925–2927.CrossRefGoogle Scholar
  54. 54.
    Hlavica, P. 1982. Biological oxidation of nitrogen in organic compounds and disposition of N-oxidized products. CRC Crit. Rev. Biochem. 12:39–101.PubMedCrossRefGoogle Scholar
  55. 55.
    Hlavica, P., I. Golly and J. Mietaschk. 1983. Comparative studies on the cumene hydroperoxide-and NADPH-supported N-oxidation of 4-chloroaniline by cytochrome P-450. Biochem. J. 212:539–547.PubMedGoogle Scholar
  56. 56.
    Ibne-Rasa, K. M. and J. O. Edwards. 1962. The mechanism of the oxidation of some aromatic amines by peroxyacetic acid. J. Amer. Chem. Soc. 84:763–768.CrossRefGoogle Scholar
  57. 57.
    Kalhorn, T., A. R. Becker and L. A. Sternson. 1981. Evidence for general catalysis and formation of nitrobenzene in the oxidation of phenylhydroxylamine in aqueous phosphate buffer. Bioorg. Chem. 10:144–151.CrossRefGoogle Scholar
  58. 58.
    Kazanis, S. and R. A. McClelland. 1992. Electrophilic intermediate in the reaction of glutathione and nitrosoarenes. J. Amer. Chem. Soc. 114:3052–3059.CrossRefGoogle Scholar
  59. 59.
    Klehr, H., P. Eyer and W. Schäfer. 1985. On the mechanism of reactions of nitrosoarenes with thiols. Biol. Chem. Hoppe-Seyler 366:755–760.PubMedCrossRefGoogle Scholar
  60. 60.
    Knight, G. T. and B. Saville. 1973. Hydrogen transfer from N-arylhydroxylamines to nitrosoarenes: an accompaniment to azoxyarene formation. J. Chem. Soc. Perkin Trans. II 1973:1550–1553.CrossRefGoogle Scholar
  61. 61.
    Koerber, S. C., P. Schack, A. M.-J. Au and M. F. Dunn. 1980. Investigation of a novel liver alcohol dehydrogenase catalyzed redox-elimination reaction involving arylnitroso substrate analogues. Biochemistry 19:731–738.PubMedCrossRefGoogle Scholar
  62. 62.
    Kohnstam, G., W. A. Petch and D. L. H. Williams. 1984. Kinetic substituent and isotope effects in the acid-catalyzed rearrangement of N-phenylhydroxylamines. Are nitrenium ions involved? J. Chem. Soc. Perkin Trans. II 1984:423–427.CrossRefGoogle Scholar
  63. 63.
    Kolanczyk, R. C., H. R. Gutmann and I. R. Rutks. 1992. Effect of bovine serum albumin on the extent of ortho rearrangement of N-(sulfooxy)-2-fluorenylacetamide and of enzymatically activated N-hydroxy-2-fluorenylacetamide and on the binding of reactive esters to nucleic acids. Chem. Res. Toxicol. 5:274–279.PubMedCrossRefGoogle Scholar
  64. 64.
    Land, S. J., K. Zukowski, M.-S. Lee, C. Y. Wang and C. M. King. 1993. Purification and characterization of a rat hepatic acetyltransferase that can metabolize aromatic amine derivatives. Carcinogenesis 14:1441–1449.PubMedCrossRefGoogle Scholar
  65. 65.
    Leskovac, V., J. Svircevic, S. Trivic, M. Popovic, and M. Radulovic. 1989. Reduction of aryl nitroso compounds by pyridine and flavin coenzymes. Int. J. Biochem. 21:825–834.PubMedCrossRefGoogle Scholar
  66. 66.
    Lim, L. O., B. R. Corbett and M. D. Corbett. 1987. Irreversible inhibition of the cytosolic metabolism of N-hydroxy-2-acetylaminofluorene by its glycolyl analog. Cancer Lett. 37:205–211.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu, Y.-Y., A. Y. H. Lu, R. A. Stearns and S.-H. L. Chiu. 1992. In vivo covalent binding of [14C]trinitrotoluene to proteins in the rat. Chem.-Biol. Interact. 82:1–19.PubMedCrossRefGoogle Scholar
  68. 68.
    Lobo, A. M., M. M. Marques, S. Prabhakar and J. S. Rzepa. 1987. Tetrahedral intermediates formed by nitrogen and oxygen attack of aromatic hydroxylamines on acetyl cyanide. J. Org. Chem. 52:2925–2927.CrossRefGoogle Scholar
  69. 69.
    Lutz, R. E. and M. R. Lytton. 1937. Oxidation-reduction potentials of a series of nitrosobenzene-phenyl-hydroxylamine systems. J. Org. Chem. 2:68–75.CrossRefGoogle Scholar
  70. 70.
    Mangold, B. L. K., J. Erickson, C. Lohr, D. J. McCann and J. B. Mangold. 1990. Self-catalyzed irreversible inactivation of rat hepatic aryl sulfotransferase IV by N-hydroxy-2-acetylaminofluorene. Carcinogenesis 11:1563–1567.PubMedCrossRefGoogle Scholar
  71. 71.
    Maples, K. R., P. Eyer and R. P. Mason. 1990. Aniline-, phenylhydroxylamine-, nitrosobenzene-, and nitrobenzene-induced hemoglobin thiyl free radical formation in vivo and in vitro. Molec. Pharmacol. 37:311–318.Google Scholar
  72. 72.
    Maskos, Z. and G. W. Winston. 1993. Alcohol dehydrogenase-dependent reduction of 2-nitrosofluorene and rearrangement of N-hydroxy-2-aminofluorene. Biochemistry 32:12768–12773.PubMedCrossRefGoogle Scholar
  73. 73.
    Mason, R. P. 1982. Free-radical intermediates in the metabolism of toxic chemicals, p. 161–222. In W.A. Pryor (ed.), Free radicals in biology. Academic Press, New York.Google Scholar
  74. 74.
    Michels, J. and G. Gottschalk. 1994. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 60:187–194.PubMedGoogle Scholar
  75. 75.
    Minchin, R. F., K. F. Ilett, C. H. Teitel, P. T. Reeves and F. F. Kadlubar. 1992. Direct O-acetylation of N-hydroxy arylamines by acetylsalicylic acid to form carcinogen-DNA adducts. Carcinogenesis 13:663–667.PubMedCrossRefGoogle Scholar
  76. 76.
    Nishino, S. F. and J. C. Spain. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59:2520–2525.PubMedGoogle Scholar
  77. 77.
    Novak, M., M. J. Kahley, E. Eiger, J. S. Helmick and H. E. Peters. 1993. Reactivity and selectivity of nitrenium ions derived from ester derivatives of carcinogenic N-(4-biphenyl)hydroxylamine and the corresponding hydroxamic acid. J. Amer. Chem. Soc. 115:9453–9460.CrossRefGoogle Scholar
  78. 78.
    Novak, M. and R. K. Lagerman. 1988. Hydrolysis of Fe2+-induced reduction of N-aryl-O-pivaloylhydroxylamines: aqueous solution chemistry of model carcinogens. J. Org. Chem. 53:4762–4769.CrossRefGoogle Scholar
  79. 79.
    Novak, M., K. A. Martin and J. L. Heinrich. 1989. SN2 reactions of a carbon nucleophile with N-aryl-O-pivaloylhydroxylamines: a model for in vivo reactions of carcinogenic metabolites of aromatic amines. J. Org. Chem. 54:5430–5431.CrossRefGoogle Scholar
  80. 80.
    Novak, M., M. Pelecanou. A. K. Roy, A. F. Andronico, F. M. Plourde, T. M. Olefirowicz and T. J. Curtin. 1984. Solvolysis of N-sulfonoxyacetanilides in aqueous and alcohol solutions: generation of electrophilic species. J. Amer. Chem. Soc. 106:5623–5631.CrossRefGoogle Scholar
  81. 81.
    Novak, M. and A. K. Roy. 1985. Hydrolysis of N-(sulfonatooxy)-p-acetotoluidide: solution chemistry of models for carcinogenic metabolites of aromatic amides. J. Org. Chem. 50:571–580.CrossRefGoogle Scholar
  82. 82.
    Panda, M., M. Novak and J. Magonski. 1989. Hydrolysis kinetics of the ultimate hepatocarcinogen N-(sulfonatooxy)-2-(acetylamino)fluorene: detection of long-lived hydrolysis intermediates. J. Amer. Chem. Soc. 111:4524–4525.CrossRefGoogle Scholar
  83. 83.
    Pearson, R. G. and J. Songstad. 1967. Application of the principle of hard and soft acids and bases to organic chemistry. J. Amer. Chem. Soc. 89:1827–1836.CrossRefGoogle Scholar
  84. 84.
    Pelecanou, M. and M. Novak. 1985. Oxidation-reduction reactions of N-sulfonoxyacetanilides: mechanisms of the halide-induced reduction of models for the carcinogenic metabolites of aromatic amides. J. Amer. Chem. Soc. 107:4499–4503.CrossRefGoogle Scholar
  85. 85.
    Ringer, D. P., T. R. Norton and R. R. Self. 1992. Reaction product inactivation of aryl sulfotransferase IV following electrophilic substitution by the sulfuric acid ester of N-hydroxy-2-acetylaminofluorene. Carcinogenesis 13:107–112.PubMedCrossRefGoogle Scholar
  86. 86.
    Sakamoto, Y., T. Yoshioka and T. Uematsu. 1989. N-Arylhydroxamic acids: reaction of nitroso aromatics with α-oxo acids. J. Org. Chem. 54:4449–4453.CrossRefGoogle Scholar
  87. 87.
    Sone, T., Y. Tokuda, T. Sakai, S. Shinkai and O. Manabe. 1981. Kinetics and mechanisms of the Bamberger rearrangement. Part 3. Rearrangement of phenylhydroxylamines to p-aminophenols in aqueous sulphuric acid solution. J. Chem. Soc. Perkin. Trans. II 1981:298–302.CrossRefGoogle Scholar
  88. 88.
    Ulbrich, R., M. Famulok, F. Bosold and G. Boche. 1990. SN2 at nitrogen: the reaction of N-(4-cyanophenyl)-O-diphenylphosphinoylhydroxylamine with N-methylaniline. A model for the reactions of ultimate carcinogens of aromatic amines with (bio)nucleophiles. Tetrahedron Lett. 31:1689–1692.CrossRefGoogle Scholar
  89. 89.
    Weisburger, E. K. 1978. Mechanism of chemical carcinogenesis. Ann. Rev. Pharmacol. Toxicol. 18:395–415.CrossRefGoogle Scholar
  90. 90.
    Yoshioka, T., T. Suzuki and T. Uematsu. 1989. Biotransformation of N-substituted aromatic compounds in mammalian spermatozoa. Nonoxidative formation of N-hydroxy-N-arylacetamides from nitroso aromatic compounds. J. Biol. Chem. 264:12432–12438.PubMedGoogle Scholar
  91. 91.
    Yoshioka, T. and T. Uematsu. 1993. Formation of N-hydroxy-N-arylacetamides from nitrosoaromatic compounds by the mammalian pyruvate dehydrogenase complex. Biochem. J. 290:783–790.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michael D. Corbett
    • 1
  • Bernadette R. Corbett
    • 1
  1. 1.Eppley Institute for Cancer ResearchUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations