Basic Knowledge and Perspectives on Biodegradation of 2,4,6-Trinitrotoluene and Related Nitroaromatic Compounds in Contaminated Soil

  • Paul-Gerhard Rieger
  • Hans-Joachim Knackmuss
Part of the Environmental Science Research book series (ESRH, volume 49)


Although a few aromatic compounds bearing one nitro group as a substituent are produced as secondary metabolites by microorganisms (31, 44, 45, 49) the majority of nitroaromatic compounds in the environment are due to anthropogenic activities. Nitrations are important reactions for the large-scale production of aminoaromatic structures that are synthons for pesticides, dyes, polymers, and pharmaceuticals. Nitroaromatic compounds such as nitrobenzene are used as solvents, whereas polynitroaromatic compounds serve as explosives. According to Hartter (16) 2,4,6-trinitrotoluene (TNT) is produced in amounts of 2 million pounds per year. Nitroaromatic compounds are therefore abundantly present in industrial waste streams and surface waters. 2,4,6-Trinitrotoluene is commonly found as the main contaminant of soil and ground water originating from facilities for manufacturing, processing, and disposing of explosives. Often these contaminants have leached from disposal lagoons into the surrounding soil, and in the case of military burdens of World War I and II, have contaminated the groundwater (13). Consequently, in Germany large areas of highly contaminated soils at former production plants must be remediated. TNT, its metabolites, and related compounds represent an environmental hazard because they exhibit considerable toxicity to humans, fish, algae, and microorganisms (39, 43, 50). Since incineration, the only proven technology for the destruction of explosives, is prohibitively costly, bioremediation represents an important alternative approach, which deserves to be considered.


Humic Substance Nitro Group Ring Cleavage Diploma Thesis Nitroaromatic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beyer, H., and W. Walter. 1991. Lehrbuch der Organischen Chemie, 22th ed. S. Hirzel, Stuttgart.Google Scholar
  2. 2.
    Boopathy, R., C. F. Kulpa, and M. Wilson. 1993. Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp. (B strain). Appl. Microbiol. Biotechnol. 39:270–275.CrossRefGoogle Scholar
  3. 3.
    Bruhn, C., H. Lenke, and H.-J. Knackmuss. 1987. Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl. Environ. Microbiol. 53:208–210.PubMedGoogle Scholar
  4. 4.
    Corbett M. D., and B. R. Corbett. 1981. Metabolism of 4-chloronitrobenzene by the yeast Rhodosporidium sp. Appl. Environ. Microbiol. 41:942–949.PubMedGoogle Scholar
  5. 5.
    Dickel, O., and H.-J. Knackmuss. 1991. Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Arch. Microbiol. 157:76–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Dickel, O., W. Haug, and H.-J. Knackmuss. 1993. Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation 4:187–194.CrossRefGoogle Scholar
  7. 7.
    Duque, E., A. Haïdour, F. Godoy, and J. L. Ramos. 1993. Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J. Bacteriol. 175:2278–2283.PubMedGoogle Scholar
  8. 8.
    Ecker, S., T. Widmann, H. Lenke, O. Dickel, P. Fischer, C. Brunn, and H.-J. Knackmuss. 1992. Catabolism of 2,6-dinitrophenol by Alcaligenes eutrophus JMP134 and JMP222. Arch. Microbiol. 158:149–154.CrossRefGoogle Scholar
  9. 9.
    Finley, K. T. 1974. The addition and substitution chemistry of quinones. In S. Patai (ed.) The chemistry of the quinonoid compounds. Pt. 2. J. Wiley & Sons, New York.Google Scholar
  10. 10.
    Funk, S. B., D. J. Roberts, D. L. Crawford, and R. L. Crawford. 1993. Initial phase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol. 59:2171–2177.PubMedGoogle Scholar
  11. 11.
    Groenewegen, P. E. J., P. Breeuwen, J. M. L. M. v. Helvoort, A. A. M. Langenhoff, F. P. de Vries, and J. A. M. de Bont. 1992. Novel degradative pathway of 4-nitrobenzoate Comamonas acidovorans NBA-10. J. Gen. Microbiol. 13:1599–1605.Google Scholar
  12. 12.
    Groenewegen, P. E. J., and J. A. M. de Bont. 1992. Degradation of 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate in Comamonas acidovorans NBA-10. Arch. Microbiol. 158:381–386.CrossRefGoogle Scholar
  13. 13.
    Haas, R., and E. v. Löw. 1986. Grundwasserbelastung durch eine Altlast. Die Folgen einer ehemaligen Sprengstoffproduktion für die heutige Trinkwassergewinnung. Forum Städte-Hygiene 37:33–43.Google Scholar
  14. 14.
    Haigier, B. E., and J. C. Spain. 1991. Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. Appl. Environ. Microbiol. 57:3156–3162.Google Scholar
  15. 15.
    Haigler, B. E., and J. C. Spain. 1993. Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol. 59:2239–2243.PubMedGoogle Scholar
  16. 16.
    Hartter, D. R. 1985. The use and importance of nitroaromatic chemicals in the chemical industry, p. 1–14. In D. E. Rickert (ed.) Toxicity of nitroaromatic compounds. Chemical Industry Institute of Toxicology Series. Hemisphere Publishing Corp., New York.Google Scholar
  17. 17.
    Heijman, C. G., C. Holliger, M. A. Glaus, R. P. Schwarzenbach, and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59:4350–4353.PubMedGoogle Scholar
  18. 18.
    Hofmann, U. 1968. Aus der Chemie des Tons. Angew. Chem. I. E. 7:681.CrossRefGoogle Scholar
  19. 19.
    Keys, L. D., and G. A. Hamilton. 1987. The mechanism for the conversion of a-amino-ß-carboxymuconate-8-semialdehyde to quinolinate, an apparent nonenzymic step in the biosynthesis of the nicotinamide coenzymes from tryptophan. J. Am. Chem. Soc. 109:2156–2163.CrossRefGoogle Scholar
  20. 20.
    Lantz, R., and J. Gascon. 1965. Condensation oxydante de “l’éméraldine de Willstätter” avec l’aniline. Remarques concernant les réactions analogues génératrices de noirs d’aniline et la constitution de ces colorants. Bull. Soc. Chim. Fr. 816-821.Google Scholar
  21. 21.
    Lenke, H., and H.-J. Knackmuss. 1992. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL24-2. Appl. Environ. Microbiol. 58:2933–2937.PubMedGoogle Scholar
  22. 22.
    Lenke, H., D. H. Pieper, C. Bruhn, and H.-J. Knackmuss. 1992. Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strain HL24-1 and HL24-2. Appl. Environ. Microbiol. 58:2928–2932.PubMedGoogle Scholar
  23. 23.
    Lenke, H., B. Wagener, G. Daun, and H.-J. Knackmuss. 1994. TNT-contaminated soil: a sequential anaerobic/aerobic process for bioremediation, abstr. Q-383, p. 456. Abstr. 94th Annu. Meet. Am. Soc. Microbiol. 1994.Google Scholar
  24. 24.
    Lewis, W. G., and E. Jamamoto. 1990. Lignin: occurrence, biogenesis and biodegradation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41:455–496.CrossRefGoogle Scholar
  25. 25.
    March, J. 1985. Advanced Organic Chemistry, 3rd ed. J. Wiley & Sons, New York.Google Scholar
  26. 26.
    McCormick, N. G., F. E. Feeherry, and H. S. Levinson. 1976. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31:949–958.PubMedGoogle Scholar
  27. 27.
    Michels, J., and G. Gottschalk. 1994. Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl. Environ. Microbiol. 60:187–194.PubMedGoogle Scholar
  28. 28.
    Mohilner, D. M., R. N. Adams, and W. J. Argasinger. 1962. Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode. J. Am. Chem. Soc. 84:3618–3622.CrossRefGoogle Scholar
  29. 29.
    Nishino, S. F., and J. C. Spain. 1993. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 59:2520–2525.PubMedGoogle Scholar
  30. 30.
    Preuß, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.PubMedCrossRefGoogle Scholar
  31. 31.
    Raistrick, H. 1949. Chloromycetin: its structure and synthesis. Nature 163:5553–554.Google Scholar
  32. 32.
    Reineke, W., and H.-J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim. Biophys. Acta 542:412–423.CrossRefGoogle Scholar
  33. 33.
    Rhys-Williams, W., S. C. Taylor, and P. A. Williams. 1993. A novel pathway for the catabolism of 4-nitrotoluene by Pseudomonas. J. Gen. Microbiol. 139:1967–1972.PubMedCrossRefGoogle Scholar
  34. 34.
    Rieger, P.-G., A. Preuss, V. Sinnwell, W. Francke, H. Lenke, and H.-J. Knackmuss. 1994. H-additions as initial steps of aerobic bacterial degradation of 2,4,6-trinitrophenol (picric acid), abstr. Q-120, p. 409. Abstr. 94th Annu. Meet. Am. Soc. Microbiol. 1994.Google Scholar
  35. 35.
    Scheffer, F., and P. Schachtschabel. 1989. Lehrbuch der Bodenkunde, p. 57, 12th ed. F. Enke, Stuttgart.Google Scholar
  36. 36.
    Sollenberger, P. Y., and R. B. Martin. 1968. Carbon-nitrogen and nitrogen-nitrogen double bond condensation reactions. In S. Patai (ed.) The chemistry of the amino group. J. Wiley & Sons, New York.Google Scholar
  37. 37.
    Spain, J. C., O. Wyss, and D. T. Gibson. 1979. Enzymatic oxidation of p-nitrophenol. Biochem. Biophys. Res. Commun. 88:634–641.PubMedCrossRefGoogle Scholar
  38. 38.
    Spain, J. C., and D. T. Gibson. 1991. Pathway for biodégradation of p-nitrophenol in a Moraxella sp. Appl. Environ. Microbiol. 57:812–819.PubMedGoogle Scholar
  39. 39.
    Spanggord, R. J., K. E. Mortelmans, A. F. Griffing, and V. F. Simmon. 1982. Mutagenicity in Salmonella typhimurium and structure activity relationships of waste water components emanating from the manufacture of trinitrotoluene. Environ. Mutagen 4:163–179.PubMedCrossRefGoogle Scholar
  40. 40.
    Spanggord, R. J., J. C. Spain, S. F. Nishino, and K. E. Mortelmans. 1991. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol. 57:3200–3205.PubMedGoogle Scholar
  41. 41.
    Spiker, J. K., D. L. Crawford, and R. L. Crawford. 1992. Influence of 2,4,6-trinitrotoluene (TNT) concentrations on the degradation of TNT in explosive-contaminted soils by the white rot fungus Phanaerochaete chrysosporium. Appl. Environ. Microbiol. 58:3199–3202.PubMedGoogle Scholar
  42. 42.
    Stolz, A., B. Nörtemann, and H.-J. Knackmuss. 1992. Bacterial metabolism of 5-aminosalicylic acid. Initial ring cleavage. Biochem. J. 282:675–680.Google Scholar
  43. 43.
    Tan, E. L., C. H. Ho, W. H. Griest, and R. L. Tyndall. 1992. Mutagenicity of trinitrotoluene and its metabolites formed during composting. J. Toxicol. Environ. Health 36:165–175.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Pee, K. H., O. Salcher, and F. Lingens. 1981. Synthese von 7-Chlor-L-und 7-Chlor-D-tryptophan; Biosynthese von Pyrrolnitrin. Liebigs Ann. Chem. 2:233–239.Google Scholar
  45. 45.
    Vanulet J., and R. L. Van Etten. 1981. Biochemistry and pharmacology of the nitro and nitroso groups, p. 201–289. In H. Feuer (ed.) The chemistry of the nitro and nitroso groups. Krieger Publishing Company, New York.Google Scholar
  46. 46.
    Vorbeck, C., H. Lenke, P. Fischer, and H.-J. Knackmuss. 1994. Identification of ahydride Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium sp. J. Bacteriol. 176:932–934.PubMedGoogle Scholar
  47. 47.
    Wagniere, G. H. 1981. Theoretical aspects of C-NO and C-NO2 bonds. In H. Feuer (ed.) The chemistry of the nitro and nitroso groups. Krieger Publishing Company, New York.Google Scholar
  48. 48.
    Weiss, A. 1963. Organische Derivate der glimmerartigen Schichtsilikate. Angew. Chem. 75:113–148.CrossRefGoogle Scholar
  49. 49.
    Williams, M. C, and R. C. Barneby. 1977. The occurence of nitro-toxins in North American A stragalus (Fabaceae). Brittonia 29:310–326.CrossRefGoogle Scholar
  50. 50.
    Won, W. D., L. H. Di Salvo, and J. Ng. 1976. Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl. Environ. Microbiol. 31:576–580.PubMedGoogle Scholar
  51. 51.
    Zeyer, J., and P. C. Kearney. 1984. Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J. Agric. Food Chem. 32:238–242.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Paul-Gerhard Rieger
    • 1
  • Hans-Joachim Knackmuss
    • 1
    • 2
  1. 1.Institut für MikrobiologieUniversität StuttgartStuttgartGermany
  2. 2.Fraunhofer-Institut für Grenzflächen- und BioverfahrenstechnikStuttgartGermany

Personalised recommendations