Zinc and Neurobiology

  • Ananda S. Prasad
Part of the Biochemistry of the Elements book series (BOTE, volume 11)


Zinc deficiency is known to affect the development of many derivatives of the primitive neural tube. Defects such as agenesis and dysmorphogenesis of the brain, spinal cord, eyes, and olfactory tract have been reported in the offsprings of zinc-deficient female rats (Hurley and Shrader, 1972). Hydrocephalus caused by closure of the aqueducts of Sylvius has also been noted as a result of zinc deficiency (Hurley, 1974). In general, the pattern of early brain malformations appears to be consistent with impaired mitosis during embryonic development and the involvement of zinc in DNA synthesis and cell division offers a plausible explanation of these observations (see Figs. 8-1, 8-2, and 8-3). It has also been suggested that the developing brain is more sensitive to zinc deficiency with respect to cell division than other organs (Eckert and Hurley, 1977).


Thymidine Kinase Zinc Deficiency Opioid Peptide Glutamic Acid Decarboxylase Zinc Status 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baraldi, M., Caselgrandi, E., and Santi, M., 1984. Effect of zinc on specific binding of GABA to rat brain membranes, in Neurobiology of Zinc, Part A ( C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Liss, New York, p. 73.Google Scholar
  2. Barbeau, A., and Donaldson, J., 1974. Zinc, taurine and epilepsy, Arch. Neurol. 30: 52.CrossRefGoogle Scholar
  3. Bergmann, K. E., Makosch, E., and Tows, K. H., 1980. Abnormalities of hair zinc concentration in mothers of newborn infants with spina bifida, Am. J. Clin. Nutr. 33: 2145.Google Scholar
  4. Blamberg, D. L., Blackwood, U. B., Supplee, W. C., and Combs, G. F., 1960. Effect of zinc deficiency in hens on hatchability and embryonic development, Proc. Soc. Exp. Biol. Med. 104: 217.Google Scholar
  5. Burnett, F. M., 1981. A possible role of zinc in the pathology of dementia, Lancet 1: 186.CrossRefGoogle Scholar
  6. Caldwell, D. F., Oberleas, D., Clancy, J. J., and Prasad, A. S., 1970. Behavioral impairment in adult rats following acute zinc deficiency, Proc. Soc. Exp. Biol. Med. 133: 1417.Google Scholar
  7. Caldwell, D. F., Oberleas, D., and Prasad, A. S., 1973. Reproductive performance of chronic mildly zinc deficient rats and the effects on behavior of their offspring, Nutr. Rep. Int. 7: 309.Google Scholar
  8. Cavdar, A. O., Arcasoy, A., Baycu, T., and Himmetoglu, O., 1980. Zinc deficiency and anencephaly in Turkey, Teratology 23: 141.CrossRefGoogle Scholar
  9. Constantinidis, J., and Tissot, R., 1981. Role of glutamate and zinc in hippocampal lesions of Pick’s disease, in Glutamate as a Neurotransmitter ( G. Dichiaa and G. L. Gessa, eds.), Raven Press, New York, p. 413.Google Scholar
  10. Crawford, I. L., and Connor, J. D., 1972. Zinc in maturing rat brain: Hippocampal concentration and localization, J. Neurochem. 19: 1451.CrossRefGoogle Scholar
  11. Crawford, I. L., and Connor, J. D., 1975. Zinc and hippocampal function, Orthomol. Psychiatry 4: 34.Google Scholar
  12. Damyanov, I., and Dutz, W., 1971. Anencephaly in Shiraz, Iran, Lancet 1: 82.CrossRefGoogle Scholar
  13. Donaldson, J., St. Pierre, T., Minnich, J. L., and Barbeau, A., 1971. Seizures in rats associated with divalent cation inhibition of Na’K’ ATPase, Can. J. Biochem. 49: 1217.Google Scholar
  14. Dreosti, I. E., 1984. Zinc in the central nervous system: The emerging interactions, in The Neurobiology of Zinc, Part A ( C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Liss, New York, p. 1.Google Scholar
  15. Dreosti, I. E., and Record, I. R., 1984. Accumulation of zinc in the hippocampus of neonatal rats, in The Neurobiology of Zinc, Part A ( C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Liss, New York, p. 119.Google Scholar
  16. Dreosti, I. E., Grey, P. C., and Wilkins, P. J., 1972. Deoxyribonucleic acid synthesis, protein synthesis and teratogenesis in zinc deficient rats, S. Afr. Med. J. 46: 1585.Google Scholar
  17. Dreosti, I. E., Record, I. R., and Manuel, S. J., 1980. Incorporation of 3H-thymidine into DNA and the activity of alkaline phosphatase in zinc deficient fetal rat brains, Biol. Trace Element Res. 2: 21.CrossRefGoogle Scholar
  18. Dreosti, I. E., Manuel, S. J., Buckley, R. A., Fraser, F. J., and Record, I. R., 1981. The effect of late prenatal and/or early postnatal zinc deficiency on the development and some biochemical aspects of the cerebullum and hippocampus in rats, Life Sci. 28: 2133.CrossRefGoogle Scholar
  19. Duerre, J. A., Ford, K. M., and Sandstead, H. H., 1977. Effect of zinc deficiency on protein synthesis in brain and liver of suckling rats, J. Nutr. 107: 1082.Google Scholar
  20. Duncan, J. R., and Dreosti, I. E., 1975. A proposed site of action for zinc in DNA synthesis, J. Comp. Pathol. 86: 81.CrossRefGoogle Scholar
  21. Ebadi, M., and Pfeiffer, R. F., 1984. Zinc in neurological disorders and in experimentally induced epileptiform seizures, in The Neurobiology of Zinc, Part B ( C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Liss, New York, p. 307.Google Scholar
  22. Ebadi, M., Itoh, M., and Swanson, S., 1982. The nature and mechanism of zinc-induced epileptic seizures, Trans. Soc. Neurosci. 12: 139.Google Scholar
  23. Eckert, C. D., and Hurley, L. S., 1977. Reduced DNA synthesis in zinc deficiency: Regional differences in embryonic rats, J. Nutr. 107: 855.Google Scholar
  24. Essatara, M. B., McClain, C. J., Levine, A. S., and Morley, J. E., 1984a. Zinc deficiency and anorexia in rats: The effect of central administration of norepinephrine, muscimol and bromergocryptine, Physiol. Behay. 32: 479.CrossRefGoogle Scholar
  25. Essatara, M. B., Morley, J. E., Levine, A. S., Elson, M. K., Shafer, R. B., and McClain, C. J., 1984b. The role of endogenous opiates in zinc anorexia, Physiol. Behay. 32: 475.CrossRefGoogle Scholar
  26. Fosmire, G. J., Al-Ubaidi, Y. Y., Halas, E., and Sandstead, H. H., 1975. Some effects of postnatal zinc deficiency on developing rat brain, Pediatr. Res. 9: 89.CrossRefGoogle Scholar
  27. Fujioka, M., and Lieberman, I., 1964. A zinc requirement for the synthesis of DNA by rat liver, J. Biol. Chem. 239: 1164.Google Scholar
  28. Goldberg, H. J., and Sheehy, E. M., 1982. Fifth day fits: An acute zinc deficiency syndrome? Arch. Dis. Child. 57: 632.CrossRefGoogle Scholar
  29. Hambidge, K. M., Neldner, K. H., and Walravens, P. A., 1975. Zinc, acrodermatitis enteropathica and congenital malformations, Lancet 1: 577.CrossRefGoogle Scholar
  30. Hesse, G. W., Frank-Hess, K. A., and Catalanotto, F. A., 1979. Behavioral characteristics in rats experiencing chronic zinc deficiency, Physiol. Behay. 22: 211.CrossRefGoogle Scholar
  31. Hurd, R. W., Wilder, B. J., and Van Rinsvelt, H. A., 1983. Valproate, birth defects and zinc, Lancet 1: 181.CrossRefGoogle Scholar
  32. Hurley, L. S., 1974. Zinc and its influence on development in the rat, in Clinical Applications of Zinc Metabolism ( W. J. Pories, W. H. Strain, J. M. Hsu, and R. L. Woosley, eds.), Thomas, Springfield, Ill., p. 57.Google Scholar
  33. Hurley, L. S., and Shrader, R. E., 1972. Congenital malformation of the nervous system in zinc deficient rats, in Neurobiology of the Trace Elements ( C. C. Pfeiffer, ed.), Academic Press, New York, p. 7.Google Scholar
  34. Hurley, L. S., and Swenerton, H., 1966. Congenital malformations resulting from zinc deficiency in rats, Proc. Soc. Exp. Biol. Med. 123: 692.Google Scholar
  35. Itoh, M., and Ebadi, M., 1981. The selective inhibition of glutamic acid decarboxylase (GAD) in hippocampus by Zn“, Pharmacologist 23: 243.Google Scholar
  36. Itoh, M., and Ebadi, M., 1982. The selective inhibition of hippocampal glutamic acid decarboxylase in zinc-induced epileptic seizures, Neurochem. Res. 7: 1287.CrossRefGoogle Scholar
  37. Itoh, M., Ebadi, M., and Swanson, S., 1983. The presence of zinc binding proteins in brain, J. Neurochem. 41.823.Google Scholar
  38. Jameson, S., 1976. Variations in maternal serum zinc during pregnancy and correlation to congenital malformation, dysmaturity and abnormal parturition, Acta Med. Scand. Suppl. 593: 21.Google Scholar
  39. Kasarskis, E. J., 1984. Regulation of zinc homeostasis in rat brain, in Neurobiology of Zinc, Part A ( C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Liss, New York, p. 27.Google Scholar
  40. Knull, H. R., and Wells, W. W., 1975. Axonal transport of cations in the chick optic system, Brain Res. 100: 121.CrossRefGoogle Scholar
  41. Krischer, K. N., 1978. Copper and zinc in childhood behavior, Psychopharmacol. Bull. 14: 58.Google Scholar
  42. Lindeman, R. D., Baxten, D. J., Yunice, A. A., and Kraikitpanitch, S., 1978. Serum concentration and urinary excretions of zinc in cirrhosis, nephrotic syndrome and renal insufficiency, Am. J. Med. Sci. 275: 17.CrossRefGoogle Scholar
  43. McGinty, J. F., Henriksen, S. J., and Chavkin, C., 1984. Is there an interaction between zinc and opioid peptides in hippocampal neurons? in Neurobiology of Zinc, Part A ( C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Liss, New York, p. 73.Google Scholar
  44. McKenzie, J. M., Fosmire, G. J., and Sandstead, H. H., 1975. Zinc deficiency during the latter third of pregnancy: Effects on fetal rat brain, liver and placenta, J. Nutr. 105: 1466.Google Scholar
  45. McLardy, T., 1975. Hippocampal zinc and structural deficit in brains from chronic alcoholics and some schizophrenics, Orthomol. Psychiatry 4: 32.Google Scholar
  46. Miller, L. P., Martin, D. L., Mazumdar, A., and Waiters, J. P., 1978. Studies on the regulation of GABA synthesis: Substrate-promoted dissociation of pyridoxal-5’-phosphate from GAD, J. Neurochem. 30: 361.CrossRefGoogle Scholar
  47. Moynahan, E. J., 1976. Zinc deficiency and disturbances of mood and visual behaviors, Lancet 1: 91.CrossRefGoogle Scholar
  48. O’Dell, B. L., Becker, J. K., Emery, M. P., and Browning, J. D., 1989. Production and reversal of the neuromuscular pathology and related signs of zinc deficiency in guinea pigs, J. Nutr. 119: 196.Google Scholar
  49. Palm, R., and Hallmans, G., 1982. Zinc and copper metabolism in phenytoin therapy, Epilepsia 23: 453.CrossRefGoogle Scholar
  50. Pfeiffer, C. C., and Iliev, V., 1972. A study of zinc deficiency and copper excess in the schizophrenia, in Neurobiology of the Trace Metals Zinc and Copper ( C. C. Pfeiffer, ed.), Academic Press, New York, p. 141.Google Scholar
  51. Pihl, R. O., and Parkes, M., 1977. Hair element content in learning disabled children, Science 198: 204.CrossRefGoogle Scholar
  52. Pippenger, C. E., Garlock, C., Fernandez, F., Slavin, W., and Iannarone, J., 1980. Effect of antiepileptic drugs on manganese, zinc and copper concentrations in whole blood, RBC, and plasma of epileptics, in Advances in Epileptology: XIth Epilepsy International Symposium ( R. Canger, ed.), Raven Press, New York, p. 435.Google Scholar
  53. Prasad, A. S., 1979. Zinc in Human Nutrition, CRC Press, Boca Raton, Fla. p. 17.Google Scholar
  54. Prasad, A. S., and Oberleas, D., 1974. Thymidine kinase activity and incorporation of thymidine into DNA in zinc deficient tissue, J. Lab. Clin. Med. 83: 634.Google Scholar
  55. Prasad, A. S., Halsted, J. A., and Nadimi, M., 1961. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia, Am. J. Med. 31: 532.CrossRefGoogle Scholar
  56. Prasad, A. S., Miale, A., Farid, Z., Schulert, A., and Sandstead, H. H., 1963. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hypogonadism, and dwarfism, J. Lab. Clin. Med. 61: 537.Google Scholar
  57. Prohaska, J. R., Luecke, R. W., and Jasinski, R., 1974. Effect of zinc deficiency from day 18 of gestation and/or during lactation on the development of some rat brain enzymes, J. Nutr. 104: 1525.Google Scholar
  58. Pryor, D. S., Don, N., and Macourt, D. C., 1981. Fifth day fits: A syndrome of neonatal convulsions, Arch. Dis. Child. 56: 753.CrossRefGoogle Scholar
  59. Quarterman, J., 1972. The effect of zinc deficiency on the activity of the adrenal glands, Proc. Nutr. Soc. 31: 74A.Google Scholar
  60. Quarterman, J., 1974. The effect of zinc deficiency or excess on the adrenals and the thymus in the rat, in Trace Elements in Animal Metabolism, Volume 2 ( W. G. Hoekstra, J. W. Suttie, A. E. Ganther, and W. Mettz, eds.), University Park Press, Baltimore, p. 742.Google Scholar
  61. Record, I. R., and Dreosti, I. E., 1979. Effects of zinc deficiency on the liver and brain thymidine kinase activity in the fetal rat, Nutr. Rep. Int. 20: 749.Google Scholar
  62. Reeves, P. G., Frissell, S. G., and O’Dell, B. L., 1977. Response of serum corticosterone to ACTH and stress in the zinc deficient rat, Proc. Soc. Exp. Biol. Med. 156: 500.Google Scholar
  63. Sandstead, H. H., 1984. Neurobiology of zinc, in Neurobiology of Zinc, Part B ( C. J. Fredrickson, G. A. Howell, and E. J. Kasarskis, eds.), Liss, New York, p. 73.Google Scholar
  64. Sandstead, H H, Gillespie, D. D., and Brady, R. N., 1972. Zinc deficiency: Effect on brain of the suckling rat, Pediatr. Res. 6: 119.CrossRefGoogle Scholar
  65. Sandstead, H. H., Fosmire, G. J., McKenzie, J. M., and Halas, E. S., 1975. Zinc deficiency and brain development in the rat, Fed. Proc. 34: 86.Google Scholar
  66. Sandstead, H. H., Fosmire, G. J., Halas, E. S., Strobel, D., and Duerre, J., 1977. Zinc: Brain and behavioral development, in Trace Element Metabolism in Man and Animals, 3rd ed. ( M. Kirchgessner, ed.), Freising University, Munich, p. 203.Google Scholar
  67. Sever, L. E., and Emanuel, I., 1973. Is there a connection between maternal zinc deficiency and congenital malformations of the central nervous system? Teratology 7: 117.CrossRefGoogle Scholar
  68. Shrestha, K. P., and Oswaldo, A., 1987. Trace elements in hair of epileptic and normal subjects, Sci. Total Environ. 67: 215.CrossRefGoogle Scholar
  69. Soltan, M. H., and Jenkins, D. M., 1982. Maternal and fetal plasma zinc concentration and fetal abnormality, Br. J. Obstet. Gynaecol. 89: 56.CrossRefGoogle Scholar
  70. Stengaard-Pederson, K., Fredens, K., and Larson, L. I., 1981. Enkephalin and zinc in the mossy fiber system, Brain Res. 212: 230.CrossRefGoogle Scholar
  71. Stewart, C., Katchan, B., Collip, P. J., Clegan, S., Pudalov, S., and Chen, S. Y., 1981. Zinc and birth defects, Pediatr. Res. 15: 515.CrossRefGoogle Scholar
  72. Swenerton, H., Shrader, R. E., and Hurley, R. L., 1969. Zinc deficient embryos: Reduced thymidine incorporation, Science 166: 1014.CrossRefGoogle Scholar
  73. Tokuoka, S., 1967. Neurochemical considerations on the alleviating effect of caudal resection of the pancreas on epileptic seizures: Relationship of zinc metabolism to brain excitability, Bull. Yamaguchi Med. Sch. 14: 1.Google Scholar
  74. Torre, J., Villasante, A., Corral, J., and Avila, J., 1981. Factors implicated in determining the structure of zinc tubulin-sheets: Lateral tubulin-tubulin interaction is promoted by the presence of zinc, J. Supramol. Struct. Cell Biochem. 17: 183.CrossRefGoogle Scholar
  75. Walker, E. W., Barnes, D. E., Zomatzer, S. F., Hunter, B. E., and Kubanic, P., 1980. Neuronal loss in hippocampus induced by prolonged ethanol consumption in rats, Science 209: 711.CrossRefGoogle Scholar
  76. Wallwork, J., and Sandstead, H. H., 1981. Effect of zinc deficiency on brain catecholamine concentrations in the rat, Fed. Proc. 40: 939.Google Scholar
  77. Wenk, G. L., and Stemmer, K. L., 1982. Activity of the enzymes dopamine-beta-hydroxylase and phenylethanolamine-N-methyltransferase in discrete brain regions of the copper-zinc deficient rat following aluminum ingestion, Neuro Tox 3: 93.Google Scholar
  78. West, J. R., Hodges, C. A., and Black, A. C., 1981. Prenatal exposure to ethanol alters the organization of the hippocampal mossy fibres, Science 211: 957.CrossRefGoogle Scholar
  79. Wolf, G., and Schmidt, W., 1982. Zinc as a putative regulatory factor of glutamate dehydrogenase activity in glutamergic systems, in Neuronal Plasticity and Memory Formation ( C. Ajmone Marson and H. Matthies, eds.), Raven Press, New York, p. 437.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ananda S. Prasad
    • 1
    • 2
    • 3
  1. 1.Department of Medicine, Division of Hematology and OncologyWayne State University School of MedicineUSA
  2. 2.Harper HospitalDetroitUSA
  3. 3.Veterans Administration Medical CenterAllen ParkUSA

Personalised recommendations