Zinc and Gene Expression

  • Ananda S. Prasad
Part of the Biochemistry of the Elements book series (BOTE, volume 11)


Recent studies show that zinc has a very important role in gene expression (Chesters, 1982; Falchuk, 1988; Vallee, 1983; Miller et al., 1985). A role of zinc in growth and development and the teratological abnormalities of zinc deficiency in fetal development have been known for many years. However, its role in cell differentiation and gene expression has been appreciated only recently.


Zinc Deficiency Thyroid Hormone Receptor Sickle Cell Disease Patient Euglena Gracilis Toxic Trace Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdallah, J. M., Kukuruga, M., Nakeff, A., and Prasad, A. S., 1988. Cell cycle distribution defect in PHA-stimulated T lymphocytes of sickle cell disease patients, Am. J. Hematol. 28: 279.CrossRefGoogle Scholar
  2. Arriza, J. L., Weinberger, C., Cerelli, G., Glaser, T. M., Handelin, B. L., Houseman, D. E., and Evans, R. M., 1987. Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor, Science 237: 268.CrossRefGoogle Scholar
  3. Baker, A. R., McDonnell, D. P., Hughes, M., Crisp, T. M., Mangelsdorf, D. J., Hanssler, M. R., Pike, J. W., Shine, J., and O’Malley, B. W., 1988. Cloning and expression of full-length cDNA encoding human vitamin D receptor, Proc. Natl. Acad. Sci. USA 85: 3294.CrossRefGoogle Scholar
  4. Blumberg, H., Eisen, A., Sledziewski, A., Bader, D., and Young, E. T., 1987. Two zinc fingers of a yeast regulatory protein shown to be essential for its functions, Nature 328: 443.CrossRefGoogle Scholar
  5. Burmester, J. K., Maeda, N., and DeLuca, H. F., 1988. Isolation and expression of rat 1,25dihydroxyvitamin D3 receptor of cDNA, Proc. Natl. Acad. Sci. USA 85: 1005.CrossRefGoogle Scholar
  6. Castells, S., Greig, F., Fusi, M. A., Finberg, L., Yasumura, S., Liberman, U. A., Eil, C., and Marx, S. J., 1986. Severely deficient binding of 1,25-dihydroxyvitamin D to its receptors in a patient responsive to high doses of this hormone, J. Clin. Endocrinol. Metab. 63: 252.CrossRefGoogle Scholar
  7. Chang, C., Kokontis, J., and Liao, S., 1988. Molecular cloning of human and rat complementary DNA encoding androgen receptors, Science 240: 324.CrossRefGoogle Scholar
  8. Chen, T. L., Hirst, M. A., Cone, C. M., Hochberg, Z., Tietze, H. V., and Feldman, D., 1984. 1,25-hydroxyvitamin resistance, rickets, and alopecia: Analysis of receptors and bioresponse in cultured fibroblasts from patients and parents, J. Clin. Endocrinol. Metab. 59: 383.Google Scholar
  9. Chesters, J. K., 1982. Metabolism and biochemistry of zinc, in Clinical, Biochemical, and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed), Liss, New York, p. 221.Google Scholar
  10. Colvard, D. S., and Wilson, E. M., 1984. Zinc potentiation of androgen receptor binding to nuclei in vitro, Biochemistry 23: 3471.CrossRefGoogle Scholar
  11. Czupryn, M., Falchuk, K. H., and Vallee, B., 1987. Zinc deficiency and metabolism of histones and non-histone proteins in Euglena gracilis, Biochemistry 26: 8263.CrossRefGoogle Scholar
  12. Falchuk, K. H., 1988. Zinc deficiency and the E. gracilis chromatin, in Essential and Toxic Trace Elements in Human Health and Disease, ( A. S. Prasad, ed.), Liss, New York, p. 75.Google Scholar
  13. Falchuk, K. H., Fawcett, D., and Vallee, B. L., 1975a. Role of zinc in cell division of E gracilis, J. Cell Sci. 17: 57.Google Scholar
  14. Falchuk, K. H., Krishan, A., and Vallee, B. L., 1975b. DNA distribution in the cell cycle of Euglena gracilis. Cytofluorimetry of zinc deficient cells, Biochemistry 14: 3449.CrossRefGoogle Scholar
  15. Falchuk, K. H., Mazus, B., Ulpino, L., and Vallee, B. L., 1976. Euglena gracilis DNA dependent RNA polymerase II: A zinc metalloenzyme, Biochemistry 15: 4468.CrossRefGoogle Scholar
  16. Falchuk, K. H., Hardy, C., Ulpino, L., and Vallee, B. L., 1978. RNA metabolism, manganese, and RNA polymerases of zinc supplemented and zinc deficient Euglena gracilis, Proc. Natl. Acad. Sci. USA 75: 4175.CrossRefGoogle Scholar
  17. Falchuk, K. H., Gordon, P. R., Stankiewizc, A., Hilt, K. L., and Vallee, B. L., 1986. Euglena gracilis chromatin: Comparison of effects of zinc, iron, magnesium, or manganese deficiency and cold shock, Biochemistry 25: 5388.CrossRefGoogle Scholar
  18. Feldman, D., Chen, T., Hirst, M., Colston, K., Karaski, M., and Cone, C., 1980. Demonstration of 1,25-dihydroxyvitamin D3 receptors in human skin biopsies, J. Clin. Endocrinol. Metab. 51: 1463.CrossRefGoogle Scholar
  19. Frankel, A. D., Berg, J. M., and Pabo, C. 0., 1987. Metal-dependent folding of a single zinc finger from transcription factor IIIA, Proc. Natl. Acad. Sci. USA 84: 4841.CrossRefGoogle Scholar
  20. Frankel, A. D., Bredt, D. S., and Pabo, C. 0., 1988. Tat protein from human immunodeficiency virus forms a metal-linked dimer, Science 240: 70.CrossRefGoogle Scholar
  21. Gamblin, G. T., Liberman, U. A., Eil, C., Downs, R. W., Jr., DeGrange, D. A., and Marx, S. J., 1985. Vitamin D-dependent rickets type II. Defective induction of 25-hydroxyvitamin D324-hydroxylase by 1,25-dihydroxyvitamin D3 in cultured skin fibroblasts, J. Clin. Invest. 75: 954.CrossRefGoogle Scholar
  22. Giguere, V., Hollenberg, S. M., Rosenfeld, M. G., and Evans, R. M., 1986. Functional domains of the human glucocorticoid receptor, Cell 48: 645.CrossRefGoogle Scholar
  23. Giguere, V., Ong, E. S., Segui, P., and Evans, R. M., 1987. Identification of a receptor of the morphogen retinoic acid, Nature 330: 624.CrossRefGoogle Scholar
  24. Green, S., and Chambon, P., 1987. Oestradiol induction of a glucocorticoid responsive gene by a chimaeric receptor, Nature 325: 75.CrossRefGoogle Scholar
  25. Greene, G. L., Gilna, P., Waterfield, M., Baker, A., Hort, Y., and Shine, J., 1986. Sequence and expression of human estrogen receptor complementary DNA, Science 231: 1150.CrossRefGoogle Scholar
  26. Hirst, M. A., Hochman, H. E., and Feldman, D., 1985. Vitamin D resistance and alopecia: A kindred with normal 1,25 dihydroxyvitamin D binding, but decreased receptor affinity for deoxyribonucleic acid, J. Clin. Endocrinol. Metab. 60: 490.CrossRefGoogle Scholar
  27. Hochberg, Z., Benderlin, A., Levy, J., Vardi, P., Weisman, Y., Chen, T., and Feldman, D., 1984. 1,25-Dihydroxyvitamin D resistance, rickets, and alopecia, Am. J. Med. 77: 805.Google Scholar
  28. Hollenberg, S. M., Weinberger, C., Ong, E. S., Cerelli, G., Oro, A., Labo, R., Thompson, E. B., Rosenfield, M. G., and Evans, R. M., 1985. Primary structure and expression of a functional human glucocorticoid receptor cDNA, Nature 318: 635.CrossRefGoogle Scholar
  29. Hughes, M. R., Malloy, P. J., Kieback, D. G., Kesterson, R. A., Wesley-Pike, J., Feldman, D., and O’Malley, B. W., 1988. Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets, Science 242: 1702.CrossRefGoogle Scholar
  30. Johnston, M., 1987a. Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL 4 protein, Nature 328: 353.CrossRefGoogle Scholar
  31. Johnston, M., 1987b. A model fungal gene regulatory mechanism: The GAL genes of Saccharomyces cerevisiae, Microbiol. Rev. 51: 458.Google Scholar
  32. Johnston, M., and Dover, J., 1987. Mutations that indicate a yeast transcriptional regulatory protein cluster in an evolutionarily conserved DNA binding domain, Proc. Natl. Acad. Sci. USA 84: 2401.CrossRefGoogle Scholar
  33. Keegan, L., Gill, G., and Ptashne, M., 1986. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein, Science 231: 699.CrossRefGoogle Scholar
  34. Klug, A., and Rhodes, D., 1987. “Zinc fingers”: A novel protein motif for nucleic acid recognition, Trends Biochem. Sci. 12: 461.Google Scholar
  35. Kornberg, R. D., 1977. Structure of chromatin, Annu. Rev. Biochem. 46: 931.CrossRefGoogle Scholar
  36. Krust, A., Green, S., Argos, P., Kumar, V., Walter, P., Bornert, J. M., and Chambon, P., 1986. The chicken oestrogen receptor sequence: Homology with v-erbA and the human oestrogen and glucocorticoid receptors, EMBO J. 5: 891.Google Scholar
  37. Kumar, V., Green, S., Staub, A., and Chambon, P., 1986. Localization of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor, EMBO J. 5: 2231.Google Scholar
  38. Liberman, U. A., Eil, C., and Marx, S. J., 1983. Resistance to 1,25-dihydroxyvitamin D. Association with heterogenous defects in cultured skin fibroblasts, J. Clin. Invest. 71: 192.CrossRefGoogle Scholar
  39. Lubahn, D. B., Joseph, D. R., Sullivan, P. M., Willard, H. F., French, F. S., and Wilson, E. M., 1988. Cloning of human androgen receptor complementary DNA and localization of the X chromosome, Science 240: 327.CrossRefGoogle Scholar
  40. McDonnell, D. P., Mangelsdorf, D. J., Pike, J. W., Haussler, M. R., and O’Malley, B. W., 1987. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D, Science 235: 1214.CrossRefGoogle Scholar
  41. Miller, J., McLachlan, A. D., and Klug, A., 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from xenopus oocytes, EMBO J. 4: 1609.Google Scholar
  42. Misrahi, M., Atger, M., D’Auriol, L., Loosfelt, H., Meriel, C., Fridlansky, F., Guiochon-Mantel, A., Galibert, F., and Milgrom, E., 1987. Complete amino acid sequence of the human progesterone receptor deduced from cloned cDNA, Biochem. Biophys. Res. Commun. 143: 740.CrossRefGoogle Scholar
  43. Petkovich, M., Brand, N. J., Krust, A., and Chambon, P., 1987. A human retinoic acid receptor which belongs to the family of nuclear receptors, Nature 330: 444.CrossRefGoogle Scholar
  44. Sabbath, M., Redeuilh, G., Secco, C., and Baulieu, E. E., 1987. The binding activity of estrogen receptor to DNA and heat shock protein (Mr90,000) is dependent on receptor-bound metal, J. Biol. Chem. 262: 8631.Google Scholar
  45. Stankiewicz, A. J., Falchuk, K. H., and Vallee, B. L., 1983. Composition and structure of zinc deficient Euglena gracilis chromatin, Biochemistry 22: 5150.CrossRefGoogle Scholar
  46. Sunderman, F. W., Jr., and Barber, A. M., 1988. Finger-loops, oncogenes, and metals, Ann. Clin. Lab. Sci. 18: 267.Google Scholar
  47. Thompson, C. C., Weinberg, C., Lebo, R., and Evans, R. M., 1987. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system, Science 237: 1610.CrossRefGoogle Scholar
  48. Vallee, B. L., 1983. A role of zinc in gene expression, J. Inherited Metab. Dis. 6 (Suppl. 1): 31.CrossRefGoogle Scholar
  49. Weinberger, C., Hollenberg, S. M., Rosenfeld, M. G., and Evans, R. M., 1985. Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product, Nature 318: 670.CrossRefGoogle Scholar
  50. Weinberger, C., Thompson, C. C., Ong, E. S., Lebo, R., Gruol, D. J., and Evans, R. M., 1986. The c-erb-A gene encodes a thyroid hormone receptor, Nature 324: 641.CrossRefGoogle Scholar
  51. Weinberger, C., Giguere, V., Hollenberg, S. M., Thompson, C., Arriza, J., and Evans, R. M., 1987. Human steroid receptors and erb-A gene products form a superfamily of enhancer-binding proteins, Clin. Physiol. Biochem. 5: 179.Google Scholar
  52. Wharton, K. A., Johansen, K. M., Xu, T., and Artavanis-Tsakonas, S., 1985. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats, Cell 43: 567.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ananda S. Prasad
    • 1
    • 2
    • 3
  1. 1.Department of Medicine, Division of Hematology and OncologyWayne State University School of MedicineUSA
  2. 2.Harper HospitalDetroitUSA
  3. 3.Veterans Administration Medical CenterAllen ParkUSA

Personalised recommendations