Advertisement

Lens

  • Elaine R. Berman
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

The crystalline lens, with its unusually high protein content and unique arrangement of structural fibers, provides the refractive index necessary to focus images on the retina. To achieve this, the lens must be perfectly transparent; loss of transparency, or cataract, is found in all populations throughout the world and is a common cause of blindness if not treated surgically. Normal lens structure, metabolism, biochemistry, photochemistry, and development, as well as changes occurring during aging and/or in cataract formation, are under active investigation in hundreds of laboratories today. Studies on the soluble proteins, the crystallins, their three-dimensional structures, and their genes are generating an ever-growing body of information on the evolution and origins of the lens crystallins. Equally intensive efforts are being directed toward biochemical characterization of the lens fibers and elucidation of the role played by the gap junction-like protein, MP26 (main intrinsic polypeptide of M r 26,000), in cell-to-cell communication.

Keywords

Aldose Reductase Fiber Cell Lens Crystallins Lens Epithelial Cell Human Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, H., Singh, S. V., Medh, R. D., Ansari, G. A. S., Kurosky, A., and Awasthi, Y. C., 1988, Differential expression of a, p. and ‘rr classes of isozymes of glutathione S-transferase in bovine lens, cornea, and retina, Arch. Biochem. Biophys. 266: 416–426.PubMedCrossRefGoogle Scholar
  2. Akagi, Y., Kador, P. F., and Kinoshita, J. H., 1987, Immunohistochemical localization for aldose reductase in diabetic lenses, Invest. Ophthalmol. Vis. Sci. 28:163.-167.Google Scholar
  3. Akesson, B., Bengtsson, B., and Steen, B., 1987, Are lens opacities related to plasma selenium and glutathione peroxidase in man? Exp. Eye Res. 44: 595–596.PubMedCrossRefGoogle Scholar
  4. Albers-Jackson, B., and Do, A. N., 1987, Lipid synthesis in the bovine lens, Curr. Eye Res. 6: 1161–1164.PubMedCrossRefGoogle Scholar
  5. Alcala, J., and Maisel, H., 1985, Biochemistry of lens plasma membranes and cytoskeleton, in: The Ocular Lens. Structure, Function, and Pathology ( H. Maisel, ed.), Marcel Dekker, New York, pp. 169–222.Google Scholar
  6. Alcala, J., Lieska, N., and Maisel, H., 1975, Protein composition of bovine lens cortical fiber cell membranes, Exp. Eye Res. 21: 581–595.PubMedCrossRefGoogle Scholar
  7. Alcala, J., Valentine, J., and Maisel, H., 1980, Human lens fiber cell plasma membranes. 1. Isolation, polypeptide composition and changes associated with ageing, Exp. Eye Res. 30: 659–677.PubMedCrossRefGoogle Scholar
  8. Alcala, J., Katar, M., and Maisel, H., 1982/1983, Lipid composition of chick lens fiber cell gap junctions, Curr. Eye Res. 2: 569–578.Google Scholar
  9. Alcala, J., Cenedella, R. J., and Katar, M., 1985, Limited proteolysis of MP26 in lens fiber plasma membranes of the UI8666A-induced cataracts in rats, Curr. Eye Res. 4: 1001–1005.PubMedCrossRefGoogle Scholar
  10. Alcala, J., Katar, M., Rudner, G., and Maisel, H., 1988, Human beta crystallins: Regional and age related changes, Curr. Eye Res. 7: 353–359.PubMedCrossRefGoogle Scholar
  11. Anderson, R. S., Shearer, T. R., and Claycomb, C. K., 1986, Selenite-induced epithelial damage and cortical cataract, Curr. Eye Res. 5: 53–61.PubMedCrossRefGoogle Scholar
  12. Andley, U. P., 1988, Spectroscopic studies on the riboflavin-sensitized conformational changes of calf lens a-crystallin, Exp. Eye Res. 46: 531–544.PubMedCrossRefGoogle Scholar
  13. Andley, U. P., and Clark, B. A., 1988a, Conformational changes of ßH-crystallin in riboflavin-sensitized photooxidation, Exp. Eye Res. 47: 1–15.PubMedCrossRefGoogle Scholar
  14. Andley, U. P., and Clark, B. A., 1988b, Spectroscopic studies on the photooxidation of calf-lens -y-crystallin, Curr. Eye Res. 7: 571–579.PubMedCrossRefGoogle Scholar
  15. Andley, U. P., and Clark, B. A., 1989, Generation of oxidants in the near-UV photooxidation of human lens a-crystallin, Invest. Ophthalmol. Vis. Sci. 30: 706–713.PubMedGoogle Scholar
  16. Andrews, J. S., Leonard-Martin, T., and Kador, P. F., 1984, Membrane lipid biosynthesis in the Philly mouse lens. I. The major phospholipid classes, Curr. Eye Res. 3: 279–285.PubMedCrossRefGoogle Scholar
  17. Aster, J. C., Brewer, G. J., Hanash, S. M., and Maisel, H., 1984, Band 4.1-like proteins of the bovine lens, Biochem J. 224: 609–616.PubMedGoogle Scholar
  18. Awasthi, Y. C., Saneto, R. P., and Srivastava, S. K., 1980, Purification and properties of bovine lens glutathione S-transferase, Exp. Eye Res. 30: 29–39.PubMedCrossRefGoogle Scholar
  19. Barron, B. C., Yu, N.-T., and Kuck, J. F. R., Jr., 1987, Tryptophan Raman/457.9-nm-excited fluorescence of intact guinea pig lenses in aging and ultraviolet light, Invest. Ophthalmol. Vis. Sci. 28: 815–821.PubMedGoogle Scholar
  20. Barron, B. C., Yu, N.-T., and Kuck, J. F. R., Jr., 1988a, Raman spectroscopic evaluation of aging and long-wave UV exposure in the guinea pig lens: A possible model for human aging, Exp. Eye Res. 46: 249–258.PubMedCrossRefGoogle Scholar
  21. Barron, B. C., Yu, N.-T., and Kuck, J. F. R., Jr., 1988b, Distribution of a 488.0-nm-excited fluorophor in the equatorial plane of the human lens by a laser Raman microprobe: A new concept in fluorescence studies, Exp. Eye Res. 47: 901–904.PubMedCrossRefGoogle Scholar
  22. Bekhor, I., 1988, MP26 messenger RNA sequences in normal and cataractous lens, Invest. Ophthalmol. Vis. Sci. 29: 802–813.PubMedGoogle Scholar
  23. Benedek, G. B., Chylak, L. T., Jr., Libondi, T., Magnante, P., and Pennett, M., 1987, Quantitative detection of the molecular changes associated with early cataractogenesis in the living human lens using quasielastic light scattering, Curr. Eye Res. 6: 1421–1432.PubMedCrossRefGoogle Scholar
  24. Bensch, K. G., Fleming, J. E., and Lohmann, W., 1985, The role of ascorbic acid in senile cataract, Proc. Natl. Acad. Sci. USA 82: 7193–7196.PubMedCrossRefGoogle Scholar
  25. Bergad, P. L., and Rathbun, W. B., 1986, Inhibition of Na,K-ATPase by sodium selenite and reversal by glutathione, Curr. Eye Res. 5: 919–923.PubMedCrossRefGoogle Scholar
  26. Bessems, G. J. H., and Hoenders, H. J., 1987, Distribution of aromatic and fluorescent compounds within single human lenses, Exp. Eye Res. 44: 817–824.PubMedCrossRefGoogle Scholar
  27. Bessems, G. J. H., Hoenders, H. J., and Wollensak, J., 1983, Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract, Exp. Eye Res. 37: 627–637.PubMedCrossRefGoogle Scholar
  28. Bessems, G. J. H., de Man, B. M., Bours, J., and Hoenders, H. J., 1986, Age-related variations in the distribution of crystallins within the bovine lens, Exp. Eye Res. 43: 1019–1030.PubMedCrossRefGoogle Scholar
  29. Bessems, G. J. H., Keizer, E., Wollensak, J., and Hoenders, H. J., 1987a, Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses, Invest. Ophthalmol. Vis. Sci. 28: 1157–1163.PubMedGoogle Scholar
  30. Bessems, G. J. H., Rennen, H. J. J. M., and Hoenders, H. J., 1987b, Lanthionine, a protein cross-link in cataractous human lenses, Exp. Eye Res. 44: 691–695.PubMedCrossRefGoogle Scholar
  31. Beswick, H. T., and Harding, J. J., 1984, Conformational changes induced in bovine lens a-crystallin by carbamylation, Biochem. J. 223: 221–227.PubMedGoogle Scholar
  32. Beswick, H. T., and Harding, J. J., 1987a, High-molecular-weight crystallin aggregate formation resulting from non-enzymic carbamylation of lens crystallins: Relevance to cataract formation Exp. Eye Res. 45: 569–578.PubMedCrossRefGoogle Scholar
  33. Beswick, H. T., and Harding, J. J., 1987b, Conformational changes induced in lens a-and -y-crystallins by modification with glucose 6-phosphate, Biochem. J. 246: 761–769.PubMedGoogle Scholar
  34. Bettelheim, F. A., 1985, Physical basis of lens transparency, in: The Ocular Lens. Structure, Function, and Pathology ( H. Maisel, ed.), Marcel Dekker, New York, pp. 265–300.Google Scholar
  35. Bettelheim, F. A., Castoro, J. A., White, O., and Chylack, L. T., Jr., 1986, Topographic correspondence between total and non-freezable water content and the appearance of cataract in human lenses, Curr. Eye Res. 5: 925–932.PubMedCrossRefGoogle Scholar
  36. Bhuyan, K. C., and Bhuyan, D. K., 1977, Regulation of hydrogen peroxide in eye humors. Effect of 3-amino-1H-1,2,4-triazole on catalase and glutathione peroxidase of rabbit eye, Biochim. Biophys. Acta 497: 641–651.PubMedCrossRefGoogle Scholar
  37. Bhuyan, K. C., and Bhuyan, D. K., 1978, Superoxide dismutase of the eye. Relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage, Biochim. Biophys. Acta 542: 28–38.PubMedCrossRefGoogle Scholar
  38. Bhuyan, K. C., and Bhuyan, D. K., 1984, Molecular mechanism of cataractogenesis: III. Toxic metabolites of oxygen as initiators of lipid peroxidation and cataract, Curr. Eye Res. 3: 67–81.PubMedCrossRefGoogle Scholar
  39. Bhuyan, K. C., Bhuyan, D. K., Kuck, J. F. R., Jr., Kuck, K. D., and Kern, H. L., 1982/1983, Increased lipid peroxidation and altered membrane functions in Emory mouse cataract, Curr. Eye Res. 2:597–606. Bloemendal, H., 1982, Lens proteins, CRC Crit. Rev. Biochem. 12: 1–38.Google Scholar
  40. Bloemendal, H., 1985, Lens research: From protein to gene, Exp. Eye Res. 41: 429–448.PubMedCrossRefGoogle Scholar
  41. Bloemendal, H., Vermorken, A. J. M., Kibbelaar, M., Dunia, I., and Benedetti, E. L., 1977, Nomenclature for the polypeptide chains of lens plasma membranes, Exp. Eye Res. 24: 413–415.PubMedCrossRefGoogle Scholar
  42. Bloemendal, H., Piatigorsky, J., and Spector, A., 1989, Recommendations for crystallin nomenclature, Exp. Eye Res. 48: 465–466.PubMedCrossRefGoogle Scholar
  43. Blundell, T. L., Lindley, P. F., Miller, L. R., Moss, D. S., Slingsby, C., Turnell, W. G., and Wistow, G., 1983, Interactions of -y crystallin in relation to eye-lens transparency, Lens Res. 1: 109–131.Google Scholar
  44. Bochow, T. W., West, S. K., Azar, A., Munoz, B., Sommer, A., and Taylor, H. R., 1989, Ultraviolet light exposure and risk of posterior subcapsular cataracts, Arch. Ophthalmol. 107: 369–372.PubMedCrossRefGoogle Scholar
  45. Borchman, D., Delamere, N. A., and Paterson, C. A., 1988, Ca-ATPase activity in the rabbit and bovine lens, Invest. Ophthalmol. Vis. Sci. 29: 982–987.PubMedGoogle Scholar
  46. Borkman, R. F., 1984, Cataracts and photochemical damage in the lens, in: Human Cataract Formation, Ciba Foundation Symposium 106 ( J. Nugent and J. Whelan, eds.), Pitman, London, pp. 88–109.Google Scholar
  47. Borkman, R. F., Hibbard, L. B., and Dillon, J., 1986, The photolysis of tryptophan with 337.1 nm laser radiation, Photochem. Photobiol. 43: 13–19.PubMedCrossRefGoogle Scholar
  48. Bouman, A. A., de Leeuw, A. L. M., and Broekhuyse, R. M., 1980, Lens membranes. XII. Age-related changes in polypeptide compositon of bovine lens fiber membranes, Exp. Eye Res. 31: 495–503.PubMedCrossRefGoogle Scholar
  49. Bours, J. Fink, H., and Hockwin, 0., 1988, The quantification of eight enzymes from the ageing rat lens, with respect to sex differences and special reference to aldolase, Curr. Eye Res. 7: 449–455.Google Scholar
  50. Brinker, J. M., Pegg, M. T., Howard, P. S., and Kefalides, N. A., 1985, Immunochemical characterization of type IV procollagen from anterior lens capsule, Collagen Rel. Res. 5: 233–244.CrossRefGoogle Scholar
  51. Broekhuyse, R. M., and Kuhlmann, E. D., 1974, Lens membranes 1. Composition of urea-treated plasma membranes from calf lens, Exp. Eye Res. 19: 297–302.PubMedCrossRefGoogle Scholar
  52. Broekhuyse, R. M., and Kuhlmann, E. D., 1980, Lens membranes XI. Some properties of human lens main intrinsic protein (MIP) and its enzymatic conversion into a 22000 dalton polypeptide, Exp. Eye Res. 30: 305–310.PubMedCrossRefGoogle Scholar
  53. Broekhuyse, R. M., and van den Eijnden-van Raaij, A. J. M., 1986, Calcium binding proteins in lens and other tissues, Lens Res. 3: 17–33.Google Scholar
  54. Bron, A. J., Brown, N. A. P, Sparrow, J. M., and Shun-Shin, G. A., 1987, Medical treatment of cataract, Eye 1: 542–550.PubMedCrossRefGoogle Scholar
  55. Brown, N. A. P., and Bron, A. J., 1985, Medical therapy in the prevention of cataract, Trans. Ophthalmol. Soc. U.K. 104: 748–754.PubMedGoogle Scholar
  56. Brown, N. A. P., Bron, A. J., Ayliffe, W., Sparrow, J., and Hill, A. R., 1987, The objective assessment of cataract, Eye 1: 234–246.PubMedCrossRefGoogle Scholar
  57. Carper, D., Shinohara, T., Piatigorsky, J., and Kinoshita, J. H., 1982, Deficiency of functional messenger RNA for a developmentally regulated 13-crystallin polypeptide in a hereditary cataract, Science 217: 463–464.PubMedCrossRefGoogle Scholar
  58. Carper, D., Russell, P., Shinohara, T., and Kinoshita, J. H., 1985, Differential synthesis of rat lens proteins during development, Exp. Eye Res. 40: 85–94.PubMedCrossRefGoogle Scholar
  59. Carper, D., Smith-Gill, S. J., and Kinoshita, J. H., 1986, Immunocytochemical localization of the 27K 3-crystallin polypeptide in the mouse lens during development using a specific monoclonal antibody: Implications for cataract formation in the Philly mouse, Dev. Biol. 113: 104–109.PubMedCrossRefGoogle Scholar
  60. Carper, D., Nishimura, C., Shinohara, T., Dietzchold, B., Wistow, G., Craft, C., Kador, P., and Kinoshita, J. H., 1987, Aldose reductase and p-crystallin belong to the same protein superfamily as aldehyde reductase, FEBS Lett. 220: 209–213.PubMedCrossRefGoogle Scholar
  61. Castoro, J. A., and Bettelheim, F. A., 1986, Distribution of the total and non-freezable water in rat lenses, Exp. Eye Res. 43: 185–191.PubMedCrossRefGoogle Scholar
  62. Castoro, J. A., and Bettelheim, F. A., 1987, Water gradients across bovine lenses, Exp. Eye Res. 45: 191–195.PubMedCrossRefGoogle Scholar
  63. Cenedella, R. J., 1982, Sterol synthesis by the ocular lens of the rat during postnatal development, J. Lipid Res. 23: 619–626.PubMedGoogle Scholar
  64. Cenedella, R. J., 1983, Source of cholesterol for the ocular lens, studied with U18666A: A cataract-producing inhibitor of lipid metabolism, Exp. Eye Res. 37: 33–43.PubMedCrossRefGoogle Scholar
  65. Cenedella, R. J., 1985, Regional distribution of lipids and phospholipase A2 activity in normal and cataractous rat lens, Curr. Eye Res. 4: 113–120.PubMedCrossRefGoogle Scholar
  66. Cenedella, R. J., 1987, Direct chemical measurement of DNA synthesis and net rates of differentiation of rat lens epithelial cells in vivo: Applied to the selenium cataract, Exp. Eye Res. 44: 677–690.PubMedCrossRefGoogle Scholar
  67. Cenedella, R. J., 1989, Cell cycle specific effects of selenium on the lens epithelium studied in vivo by the direct chemical approach, Curr. Eye Res. 8: 429–433.PubMedCrossRefGoogle Scholar
  68. Cheng, H.-M., and Aguayo, J. B., 1988, The energy status of lenses from human donor eyes, Exp. Eye Res. 46: 451–456.PubMedCrossRefGoogle Scholar
  69. Cheng, H.-M., and Chylack, L. T., Jr., 1985, Lens metabolism, in: The Ocular Lens. Structure, Function, and Pathology ( H. Maisel, ed.), Marcel Dekker, New York, pp. 223–264.Google Scholar
  70. Cheng, H.-M., and Gonzalez, R. G., 1986, The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis, Metabolism 35: 10–14.PubMedCrossRefGoogle Scholar
  71. Cheng, H.-M., Gonzalez, R. G., Barnett, P. A., Aguayo, J. B., Wolfe, J., and Chylack, L. T., Jr., 1985, Sorbitol/fructose metabolism in the lens, Exp. Eye Res. 40: 223–229.PubMedCrossRefGoogle Scholar
  72. Cheng, H.-M, Gonzalez, R. G., von Saltza, I., Chylack, L. T., Jr., and Hutson, N. J., 1988, Glucose flux and the redox state of pyridine dinucleotides in the rat lens, Exp. Eye Res. 46: 47–952.Google Scholar
  73. Chiesa, R., Gawinowicz-Kolks, M. A., and Spector, A., 1987, The phosphorylation of the primary gene products of a-crystallin, J. Biol. Chem. 262: 1438–1441.PubMedGoogle Scholar
  74. Chiesa, R., Gawinowicz-Kolks, M. A., Kleiman, N. J., and Spector, A., 1988, Definition and comparison of the phosphorylation sites of the A and B chains of bovine a-crystallin, Exp. Eye Res. 46: 199–208.PubMedCrossRefGoogle Scholar
  75. Chiesa, R., McDermott, M. J., and Spector, A., 1989, Differential synthesis and phosphorylation of the a-crystallin A and B chains during bovine lens fiber cell differentiation, Curr. Eye Res. 8: 151–158.PubMedCrossRefGoogle Scholar
  76. Chiou, S.-H., Chylack, L. T., Jr., Tung, W. H., and Bunn, H. F., 1981, Nonenzymatic glycosylation of bovine lens crystallins; Effect of aging, J. Biol. Chem. 256: 5176–5180.PubMedGoogle Scholar
  77. Chylack, L. T., Jr., 1984, Mechanisms of senile cataract formation, Ophthalmology 91: 596–602.PubMedGoogle Scholar
  78. Chylack, L. T., Jr., and Cheng, H.-M., 1985, Clinical implications of research on lens and cataract, in: The Ocular Lens. Structure, Function, and Pathology (H. Maisel, ed.), Marcel Dekker, New York, pp. 439–466.Google Scholar
  79. Chylack, L., and Tung, W., 1986, Inexpensive stereoscopic CCRG camera for lens/cataract photography in vitro, Invest. Ophthalmol. Vis. Sci. 27: 118–122.PubMedGoogle Scholar
  80. Chylack, L., Lee, M., Tung, W., and Cheng, H.-M., 1983, Classification of human senile cataractous change by the American Cooperative Cataract Research Group (CCRG) method, Invest. Ophthalmol. Vis. Sci. 24: 424–431.PubMedGoogle Scholar
  81. Chylack, L. T., Jr., Rosner, B., Garner, W., Giblin, F., Waldron, W., Wolfe, J., Leske, M. C., and White, O., 1985, Validity and reproducibility of the cooperative cataract research group (CCRG) cataract classification system, Exp. Eye Res. 40: 135–147.PubMedCrossRefGoogle Scholar
  82. Chylack, L. T., Jr., Rosner, B., Cheng, H.-M., McCarthy, D., and Pennett, M., 1987, Sources of variance in the objective documentation of human cataractous change with topcon SL-45 and Neitz-CTR retroillumination photography and computerized image analysis, Curr. Eye Res. 6: 1381–1390.PubMedCrossRefGoogle Scholar
  83. Chylack, L. T, Jr., Leske, M. C., Sperduto, R., Khu, P., and McCarthy, D., 1988, Lens opacities classification system, Arch. Ophthalmol. 106: 330–334.PubMedCrossRefGoogle Scholar
  84. Clark, J. I., and Carper, D., 1987, Phase separation in lens cytoplasm is genetically linked to cataract formation in the Philly mouse, Proc. Natl. Acad. Sci. USA 84: 122–125.PubMedCrossRefGoogle Scholar
  85. Clayton, R. M., 1985, Developmental genetics of the lens, in: The Ocular Lens. Structure, Function, and Pathology ( H. Maisel, ed.), Marcel Dekker, New York, pp. 61–92.Google Scholar
  86. Clayton, R. M., Cuthbert, J., Seth, J., Phillips, C. I., Bartholomew, R. S., and Reid, J. M., 1984, Epidemiological and other studies in the assessment of factors contributing to cataractogenesis, in: Human Cataract Formation, Ciba Foundation Symposium 106 (J. Nugent and J. Whelan, eds.), Pitman, London, pp. 25–47.Google Scholar
  87. Cohen, L. H., Westerhuis, L. W., de Jong, W. W., and Bloemendal, H., 1978, Rat a-crystallin A chain with an insertion of 22 residues, Eur. J. Biochem. 89: 259–266.PubMedCrossRefGoogle Scholar
  88. Croft, L. R., 1972, The amino acid sequence of y-crystallin (fraction II) from calf lens, Biochem. J. 128: 961–970.PubMedGoogle Scholar
  89. Crompton, M., Rixon, K. C., and Harding, J. J., 1985, Aspirin prevents carbamylation of soluble lens proteins and prevents cyanate-induced phase separation opacities in vitro: A possible mechanism by which aspirin could prevent cataract, Exp. Eye Res. 40: 297–311.PubMedCrossRefGoogle Scholar
  90. Darrow, R. M., Morris, J. I., Organisciak, D. T., and Varandani, P. T., 1988, The occurrence of glutathioneinsulin transhydrogenase (protein-disulfide interchange enzyme) in the lens, Curr. Eye Res. 7: 861–869.PubMedCrossRefGoogle Scholar
  91. Das, G. C., and Piatigorsky, J., 1988, Promoter activity of the two chicken S-crystallin genes in a Hela cell extract, Curr. Eye Res. 7: 331–340.PubMedCrossRefGoogle Scholar
  92. Datiles, M. B., Edwards, P. A., Trus, B. L., and Green, S. B., 1987, In vivo studies on cataracts using the Scheimpflug slit lamp camera, Invest. Ophthalmol. Vis. Sci. 28: 1707–1710.Google Scholar
  93. David, L. L., and Shearer, T. R., 1984a, State of sulfhydryl in selenite cataract, Toxicol. Appl. Pharmacol. 74: 109–115.PubMedCrossRefGoogle Scholar
  94. David, L. L., and Shearer, T. R., 1984b, Calcium-activated proteolysis in the lens nucleus during selenite cataractogenesis, Invest. Ophthamol. Vis. Sci. 25: 1275–1283.Google Scholar
  95. David, L. L., and Shearer, T. R., 1986, Purification of calpain II from rat lens and determination of endogenous substrates, Exp. Eye Res. 42: 227–238.PubMedCrossRefGoogle Scholar
  96. David, L. L., Dickey, B. M., and Shearer, T. R., 1987, Origin of urea-soluble protein in the selenite cataract. Role of 3-crystallin proteolysis and calpain II, Invest. Ophthalmol. Vis. Sci. 28: 1148–1156.PubMedGoogle Scholar
  97. David, L. L., Takemoto, L. J., Anderson, R. S., and Shearer, T. R., 1988, Proteolytic changes in main intrinsic polypeptide (MIP26) from membranes in selenite cataract, Curr. Eye Res. 7: 411–417.PubMedCrossRefGoogle Scholar
  98. David, L. L., Varnum, M. D., Lampi, K. J., and Shearer, T. R., 1989, Calpain II in human lens, Invest. Ophthalmol. Vis. Sci. 30: 269–275.PubMedGoogle Scholar
  99. Delaye, M., and Tardieu, A., 1983, Short-range order of crystallin proteins accounts for eye lens transparency, Nature 302: 415–417.PubMedCrossRefGoogle Scholar
  100. DeNagel, D. C., Bando, M., Yu, N.-T., and Kuck, J. F. R., Jr., 1988, A Raman study of disulfide and sulfhydryl in the Emory mouse cataract, Invest. Ophthalmol. Vis. Sci. 29: 823–826.PubMedGoogle Scholar
  101. den Dunnen, J. T., Jongbloed,.R. J. E., Geurts van Kessel, A. H. M., and Schoenmakers, J. G. G., 1985a, Human lens.y-crystallin sequences are located the in pl2-qter region of chromosome 2, Hum. Genet. 70: 217–221.Google Scholar
  102. den Dunnen, J. T., Moormann, R. J. M., and Schoenmakers, J. G. G., I985b, Rat lens 3-crystallins are internally duplicated and homologous to -y-crystallins, Biochim. Biophys. Acta 824: 295–303.Google Scholar
  103. den Dunnen, J. T., Szpirer, J., Levan, G., Islam, Q., and Schoenmakers, J. G. G., 1987, All six rat y-crystallin genes are located on chromosome 9, Exp. Eye Res. 45: 747–750.Google Scholar
  104. Dillon, J., 1984, Photolytic changes in lens proteins, Curr. Eye Res. 3: 145–150.PubMedCrossRefGoogle Scholar
  105. Dillon, J., 1985, Photochemical mechanisms in the lens, in: The Ocular Lens. Structure, Function, and Pathology ( H. Maisel, ed.), Marcel Dekker, New York, pp. 349–366.Google Scholar
  106. Dillon, J., Roy, D., and Spector, A., 1985, The photolysis of lens fiber membranes, Exp. Eye Res. 40: 53–60.CrossRefGoogle Scholar
  107. Dobbs, R. E., Smith, J. P., Chen, T., Knowles, W., and Hockwin, O., 1987, Long-term follow-up of lens changes with Scheimpflug photography in diabetics, Ophthalmology 94: 881–890.PubMedGoogle Scholar
  108. Dodemont, H., Groenen, M., Jansen, L., Schoenmakers, J., and Bloemendal, H., 1985, Comparison of the crystallin mRNA populations from rat, calf and duck lens. Evidence for a longer aA2-mRNA and two distinct aBZ mRNAs in the birds, Biochim. Biophys. Acta 824: 284–294.PubMedCrossRefGoogle Scholar
  109. Dovrat, A., and Gershon, D., 1983, Studies on the fate of aldolase molecules in the aging rat lens, Biochim. Biophys. Acta 757: 164–167.PubMedCrossRefGoogle Scholar
  110. Dovrat, A., Scharf, J., Eisenbach, L., and Gershon, D., 1986, G6PD molecules devoid of catalytic activity are present in the nucleus of the rat lens, Exp. Eye Res. 42: 489–496.PubMedCrossRefGoogle Scholar
  111. Driessen, H. P. C., Herbrink, P., Bloemendal, H., and de Jong, W. W., 1980, The I3-crystallin Bp chain is internally duplicated and homologous with -y-crystallin, Exp. Eye Res. 31: 243–246.PubMedCrossRefGoogle Scholar
  112. Duncan, G., and Jacob, T. J. C., 1984, The lens as a physicochemical physicochemical system, in: The Eye, 3rd ed. Vol. lb ( H. Dayson, ed.), Academic Press, Orlando, FL, pp. 169–206.Google Scholar
  113. Dunia, I., Manenti, S., Rousselet, A., and Benedetti, E. L., 1987, Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers, J. Cell Biol. 105: 1679–1689.PubMedCrossRefGoogle Scholar
  114. Eckerskorn, U., Hockwin, O., Muller-Breitenkamp, R., Chen, T. T., Knowles, W., and Dobbs, R. E., 1987, Evaluation of cataract-related risk factors using detailed classification systems and multivariate statistical methods, Dev. Ophthalmol. 15: 82–91.PubMedGoogle Scholar
  115. Ellis, M., Alousi, S., Lawniczak, J., Maisel, H., and Welsh, M., 1984, Studies on lens vimentin, Exp. Eye Res. 38: 195–202.PubMedCrossRefGoogle Scholar
  116. Farnsworth, P. N., and Schleich, T., 1985, Progress toward the establishment of nuclear magnetic resonance measurements as an index of in vivo lens functional integrity, Curr. Eye Res. 4: 291–297.PubMedCrossRefGoogle Scholar
  117. Fecondo, J. V., and Augusteyn, R. C., 1983, Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens, Exp. Eye Res. 36: 15–23.PubMedCrossRefGoogle Scholar
  118. FitzGerald, P. G., 1987, Main intrinsic polypeptide proteolysis and fiber cell membrane domains, Invest. Ophthalmol. Vis. Sci. 28: 795–805.PubMedGoogle Scholar
  119. FitzGerald, P. G., 1988a, Immunochemical characterization of a Mr 115 lens fiber cell-specific extrinsic membrane protein, Curr. Eye Res. 7: 1243–1253.PubMedCrossRefGoogle Scholar
  120. FitzGerald, P. G., 1988b, Age-related changes in a fiber cell-specific extrinsic membrane protein, Curr. Eye Res. 7: 1255–1262.PubMedCrossRefGoogle Scholar
  121. Fleschner, C. R., and Cenedella, R. J., 1988, Specific restriction of cholesterol from cortical lens gap junctional membrane in the U18666A cataract, Curr. Eye Res. 7: 1029–1034.Google Scholar
  122. Fleshman, K. R., and Wagner, B. J., 1984, Changes during aging in rat lens endopeptidase activity, Exp. Eye Res. 39: 543–551.PubMedCrossRefGoogle Scholar
  123. Fukui, H. N., Merola, L. O., and Kinoshita, J. H., 1978, A possible cataractogenic factor in the Nakamo mouse lens, Exp. Eye Res. 26: 477–485.PubMedCrossRefGoogle Scholar
  124. Gandolfi, S. A., Tomba, M. C., and Maraini, G., 1985, 86-Rb efflux in normal and cataractous human lenses, Curr. Eye Res. 4: 753–758.Google Scholar
  125. Garadi, R., Reddy, V. N., Kador, P. F., and Kinoshita, J. H., 1983, Membrane glycoproteins of Philly mouse lens, Invest. Ophtalmol. Vis. Sci. 24: 1321–1324.Google Scholar
  126. Garland, D., and Russell, P., 1985, Phosphorylation of lens fiber cell membrane proteins, Proc. Natl. Acad. Sci. USA 82: 653–657.PubMedCrossRefGoogle Scholar
  127. Garland, D., Zigler, J. S., Jr., and Kinoshita, J., 1986, Structural changes in bovine lens crystallins induced by ascorbate, metal and oxygen, Arch. Biochem. Biophys. 251: 771–776.PubMedCrossRefGoogle Scholar
  128. Garlick, R. L., Mazer, J. S., Chylack, L. T., Jr., Tling, W. H., and Bunn, H. F., 1984, Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus, J. Clin. Invest. 74: 1742–1749.PubMedCrossRefGoogle Scholar
  129. Garner, M. H., and Spector, A., 1980, Selective oxidation of cysteine and methionine in normal and senile cataractous lenses, Proc. Natl. Acad. Sci. USA 77: 1274–1277.PubMedCrossRefGoogle Scholar
  130. Garner, M. H., and Spector, A., 1986, ATP hydrolysis kinetics by Na,K-ATPase in cataract, Exp. Eye Res. 42: 339–348.PubMedCrossRefGoogle Scholar
  131. Garner, M. H., Garner, W. H., and Spector, A., 1984, Kinetic cooperativity change after H2O2 modification of (Na,K)-ATPase, J. Biol. Chem. 259: 7712–7718.PubMedGoogle Scholar
  132. Garner, M. H., Garner, W. H., and Spector, A., 1986, H202-modification of Na,K-ATPase, Invest. Ophthalmol. Vis. Sci. 27: 103–107.PubMedGoogle Scholar
  133. Garner, M. H., Wang, G.-M., and Spector, A., 1987, Stimulation of glycosylated lens epithelial Na,K-ATPase by an aldose reductase inhibitor, Exp. Eye Res. 44: 339–345.CrossRefGoogle Scholar
  134. Garner, W., 1984, The application of non-invasive techniques to the study of cataract development on the metabolic and the protein molecular level, in: Human Cataract Formation, Ciba Foundation Symposium 106 ( J. Nugent and J. Whelan, eds.), Pitman, London, pp. 248–265.Google Scholar
  135. Garner, W. H., Garner, M. H., and Spector, A., 1979, Comparison of the 10,000 and 43,000 dalton polypeptide populations isolated from the water soluble and insoluble fractions of human cataractous lenses, Exp. Eye Res. 29: 257–276.PubMedCrossRefGoogle Scholar
  136. Garner, W. H., Garner, M. H., and Spector, A., 1983, H2O2-induced uncoupling of bovine lens Na+, K+-ATPase, Proc. Natl. Acad. Sci. USA 80: 2044–2048.Google Scholar
  137. Geller, A. M., Kotb, M. Y. S., Jernigan, H. M., Jr., and Kredich, N. M., 1988, Methionine adenosyltransferase and S-adenosylmethionine in the developing rat lens, Exp. Eye Res. 47: 197–204.PubMedCrossRefGoogle Scholar
  138. Gentleman, S., Reid, T. W., and Martensen, T. M., 1987, Vanadate stimulation of phosphotyrosine protein levels in quiscent Nakano mouse lens cells, Exp. Eye Res. 44: 587–594.PubMedCrossRefGoogle Scholar
  139. Getty, D. J., Pickett, R. M., Chylack, L. T., Jr., McCarthy, D. F., and Huggins, A. W. F., 1989, An enriched set of features of nuclear cataract identified by multidimensional scaling, Curr. Eye Res. 8: 1–7.PubMedCrossRefGoogle Scholar
  140. Giblin, F. J., and McCready, J. P., 1983, The effect of inhibition of glutathione reductase on the detoxification of H2O2 by rabbit lens, Invest. Ophthalmol. Vis. Sci. 24: 113–118.PubMedGoogle Scholar
  141. Giblin, F. J., McCready, J. P., Reddan, J. R., Dziedzic, D. C., and Reddy, V. N., 1985, Detoxification of H2O2 by cultured rabbit lens epithelial cells: Participation of the glutathione redox cycle, Exp. Eye Res. 40: 827–840.Google Scholar
  142. Giblin, F. J., McCready, J. P., Schrimscher, L., and Reddy, V. N., 1987, Peroxide-induced effects on lens cation transport following inhibition of glutathione reductase activity in vitro, Exp. Eye Res. 45: 77–91.PubMedCrossRefGoogle Scholar
  143. Giblin, F. J., Schrimscher, L., Chakrapani, B., and Reddy, V. N., 1988, Exposure of rabbit lens to hyperbaric oxygen in vitro: Regional effects on GSH level, Invest. Ophthalmol. Vis. Sci. 29: 1312–1319.PubMedGoogle Scholar
  144. Gooden, M. M., Takemoto, L. J., and Rintoul, D. A., 1985, Reconstitution of MIP26 from single human lenses into artificial membranes. I. Differences in pH sensitivity of cataractous vs. normal human lens fiber cell proteins, Curr. Eye Res. 4: 1107–1115.PubMedCrossRefGoogle Scholar
  145. Goosey, J. D., Zigler, J. S., Jr., and Kinoshita, J. H., 1980, Cross-linking of lens crystallins in a photodynamic system: A process mediated by singlet oxygen, Science 208: 1278–1280.PubMedCrossRefGoogle Scholar
  146. Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J., 1984, The major intrinsic protein (MIP) of the bovine lens fiber membrane: Characterization and structure based on cDNA cloning, Cell 39: 49–59.PubMedCrossRefGoogle Scholar
  147. Granger, B. L., and Lazarides, E., 1985, Appearance of new variants of membrane skeletal protein 4.1 during terminal differentiation of avian erythroid and lenticular cells, Nature 313: 238–241.PubMedCrossRefGoogle Scholar
  148. Greiner, J. V., Kopp, S. J., and Glonek, T., 1985, Phosphorous nuclear magnetic resonance and ocular metabolism, Surv. Ophthalmol. 30: 189–202.PubMedCrossRefGoogle Scholar
  149. Grover, D., and Zigman, S., 1972, Coloration of human lenses by near ultraviolet photo-oxidized tryptophan, Exp. Eye Res. 13: 70–76.PubMedCrossRefGoogle Scholar
  150. Gulik-Krzywicki, T., Tardieu, A., and Delaye, M., 1984, Spatial reorganization of low-molecular-weight proteins during cold cataract opacification, Biochim. Biophys. Acta 800: 28–32.PubMedCrossRefGoogle Scholar
  151. Harding, J. J., 1972, Conformational changes in human lens proteins in cataract, Biochem. J. 129:97–100. Harding, J. J., 1973, Disulphide cross-linked protein of high molecular weight in human cataractous lens, Exp. Eye Res. 17: 377–383.CrossRefGoogle Scholar
  152. Harding, J. J., 1981, Changes in lens proteins in cataract, in: Molecular and Cellular Biology of the Eye Lens ( H. Bloemendal, ed.), John Wiley and Sons, New York, pp. 327–366.Google Scholar
  153. Harding, J. J., 1985, Nonenzymatic covalent posttranslational modification of proteins in vivo, Adv. Protein Chem. 37: 247–334.PubMedCrossRefGoogle Scholar
  154. Harding, J. J., and Crabbe, M. J. C., 1984, The lens: Development, proteins, metabolism and cataract, in: The Eye, 3rd ed., Vol. lb ( H. Dayson, ed.), Academic Press, Orlando, FL, pp. 207–492.Google Scholar
  155. Harding, J. J., and Dilley, K. J., 1976, Structural proteins of the mammalian lens: A review with emphasis on changes in development, aging and cataract, Exp. Eye Res. 22: 1–73.PubMedCrossRefGoogle Scholar
  156. Harding, J. J., and van Heyningen, R., 1987, Epidemiology and risk factors for cataract, Eye 1: 537–541.PubMedCrossRefGoogle Scholar
  157. Harding, J. J., and van Heyningen, R., 1988, Drugs, including alcohol, that act as risk factors for cataract, and possible protection against cataract by aspirin-like analgesics and cyclopenthiazide, Br. J. Ophthalmol. 72: 809–814.PubMedCrossRefGoogle Scholar
  158. Heslip, J., Bagchi, M., Zhang, S., Alousi, S., and Maisel, H., 1986, An intrinsic membrane glycoprotein of the lens, Curr. Eye Res. 5: 949–958.PubMedCrossRefGoogle Scholar
  159. Hibino, K., Du, J., Dillon, J., and Malinowski, K., 1988, Age-dependent effect of UV light in abnormal alpha neoprotein formation in the lens, Curr. Eye Res. 7: 1113–1124.PubMedCrossRefGoogle Scholar
  160. Hightower, K. R., 1985, Cytotoxic effects of internal calcium on lens physiology: A review, Curr. Eye Res. 4: 453–459.PubMedCrossRefGoogle Scholar
  161. Hightower, K. R., and Harrison, S. E., 1987, The influence of calcium on glucose metabolism in the rabbit lens, Invest. Ophthalmol. Vis. Sci. 28: 1433–1436.PubMedGoogle Scholar
  162. Hightower, K. R., and McCready, J. P., 1989, Effects of selenium on ion homeostasis and transparency in cultured lenses, Invest. Ophthalmol. Vis. Sci. 30: 171–175.PubMedGoogle Scholar
  163. Hightower, K. R., David, L. L., and Shearer, T. R., 1987, Regional distribution of free calcium in selenite cataract: Relation to calpain II, Invest. Ophthalmol. Vis. Sci. 28: 1702–1706.PubMedGoogle Scholar
  164. Hightower, K. R., Reddan, J. R., and Dziedzic, D. C., 1989, Susceptibility of lens epithelial membrane SH groups to hydrogen peroxide, Invest. Ophthalmol. Vis. Sci. 30: 569–574.PubMedGoogle Scholar
  165. Hitchener, W. R., and Cenedella, R. J., 1987, HMG CoA reductase activity of lens epithelial cells: Compared with true rates of sterol synthesis, Curr. Eye Res. 6: 1045–1049.PubMedCrossRefGoogle Scholar
  166. Hockwin, O., Weigelin, E., Laser, H., and Dragomirescu, V., 1983, Biometry of the anterior eye segment by Scheimpflug photography, Ophthalmic Res. 15: 102–108.PubMedCrossRefGoogle Scholar
  167. Hockwin, O., Lerman, S., and Ohrloff, C., 1984, Investigation on lens transparency and its disturbances by microdensitometric analyses of Scheimpflug photographs, Curr. Eye Res. 3: 15–22.PubMedCrossRefGoogle Scholar
  168. Hockwin, O., Ahrend, M. H. J., and Bours, J., 1986, Correlation of Scheimpflug photography of the anterior eye segment with biochemical analysis of the lens, Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 224: 265–270.Google Scholar
  169. Hoenders, H. J., and Bloemendal, H., 1981, Aging of lens proteins, in: Molecular and Cellular Biology of the Eye Lens ( H. Bloemendal, ed.), John Wiley and Sons, New York, pp. 327–365.Google Scholar
  170. Hoenders, H. J., and Bloemendal, H., 1983, Lens proteins and aging, J. Gerontol. 38:278–286.Google Scholar
  171. Hogg, D., Gorin, M. B., Heinzmann, C., Zollman, S., Mohandas, T., Klisak, I., Sparkes, R. S., Breitman, M., Tsui, L.-C., and Horwitz, J., 1987, Nucleotide sequence for the cDNA of the bovine ßB2 crystallin and assignment of the orthologous human locus to chromosome 22, Curr. Eye Res. 6: 1335–1342.PubMedCrossRefGoogle Scholar
  172. Horwitz, J., Robertson, N. P., Wong, M. M., Zigler, J. S., and Kinoshita, J. H., 1979, Some properties of lens plasma membrane polypeptides isolated from normal human lenses, Exp. Eye Res. 28: 359–365.PubMedCrossRefGoogle Scholar
  173. Horwitz, J., Neuhaus, R., and Dockstader, J., 1981, Analysis of microdissected cataractous human lenses, Invest. Ophthalmol. Vis. Sci. 21: 616–619.PubMedGoogle Scholar
  174. Horwitz, J., Dovrat, A., Straatsma, B. R., Revilla, P. J., and Lightfoot, D. 0., 1987, Glutathione reductase in human lens epithelium: FAD-induced in vitro activation, Curr. Eye Res. 6: 1249–1256.Google Scholar
  175. Hsu, M.-Y., Jaskoll, T. F., Unakar, N. J., and Bekhor, I., 1987a, Survival of fiber cells and fiber-cell messenger RNA in lens of rats maintained on a 50% galactose diet for 45 days, Exp. Eye Res. 44: 577–586.PubMedCrossRefGoogle Scholar
  176. Hsu, M.-Y., Davis, C., Jaskoll, T. F., Zeineh, R. A., Unakar, N. J., and Bekhor, I., 1987b, Crystallin mRNA product levels in lens undergoing reversal and inhibition of galactose cataracts, Invest. Ophthalmol. Vis. Sci. 28: 1413–1421.PubMedGoogle Scholar
  177. Hu, T.-S., Datiles, M., and Kinoshita, J. H., 1983, Reversal of galactose cataract with sorbinil in rats, Invest. Ophthalmol. Vis. Sci. 24: 640–644.PubMedGoogle Scholar
  178. Hu, T.-S., Merola, L. 0., Kuwabara, T., and Kinoshita, J. H., 1984, Prevention and reversal of galactose cataract in rats with topical sorbinil, Invest. Ophthalmol. Vis. Sci. 25: 603–605.Google Scholar
  179. Huang, Q.-L., Russell, P., Stone, S. H., and Zigler, J. S., Jr., 1987, Zeta-crystallin, a novel lens protein from the guinea pig, Curr. Eye Res. 6: 725–732.PubMedCrossRefGoogle Scholar
  180. Huby, R., and Harding, J. J., 1988, Non-enzymic glycosylation (glycation) of lens proteins by galactose and protection by aspirin and reduced glutathione, Exp. Eye Res. 47: 53–59.PubMedCrossRefGoogle Scholar
  181. Hum, T. P., and Augusteyn, R. C., 1987a, The state of sulphydryl groups in proteins isolated from normal and cataractous human lenses, Curr. Eye Res. 6: 1091–1101.PubMedCrossRefGoogle Scholar
  182. Hum, T. P., and Augusteyn, R. C., 1987b, The nature of disulphide bonds in rat lens proteins, Curr. Eye Res. 6: 1103–1108.PubMedCrossRefGoogle Scholar
  183. Ingolia, T. D., and Craig, E. A., 1982, Four small Drosophila heat shock proteins are related to each other and to mammalian a-crystallin, Proc. Natl. Acad. Sci. USA 79: 2360–2364.PubMedCrossRefGoogle Scholar
  184. Ireland, M., and Maisel, H., 1984a, A cytoskeletal protein unique to lens fiber cell differentiation, Exp. Eye Res. 38: 637–645.PubMedCrossRefGoogle Scholar
  185. Ireland, M., and Maisel, H., 1984b, Phosphorylation of chick lens proteins, Curr. Eye Res. 3:961–968. Ireland, M., and Maisel, H., 1984c, Evidence for a calcium activated protease specific for lens intermediate filaments, Curr. Eye Res. 3: 423–429.PubMedCrossRefGoogle Scholar
  186. Ireland, M. E., and Maisel, H., 1987, Adrenergic stimulation of lens cytoskeletal phosphorylation, Curr. Eye Res. 6: 489–496.PubMedCrossRefGoogle Scholar
  187. Iwata, S., and Maesato, T., 1988, Studies on the mercapturic acid pathway in the rabbit lens, Exp. Eye Res. 47: 479–488.PubMedCrossRefGoogle Scholar
  188. Jacques, P. F., Hartz, S. C., Chylack, L. T., McGandy, R. B., and Sadowski, J. A., 1988a, Nutritional status in persons with and without senile cataract: Blood vitamin and mineral levels, Am. J. Clin. Nutr. 48: 152–158.PubMedGoogle Scholar
  189. Jacques, P. F., Chylack, L. T., McGandy, R. B., and Hartz, S. C., 1988b, Antioxidant status in persons with and without senile cataract, Arch. Ophthalmol. 106: 337–340.PubMedCrossRefGoogle Scholar
  190. Jahn, C. E., Janke, M., Winowski, H., Bergmann, K. V., Leiss, 0., and Hockwin, 0., 1986, Identification of metabolic risk factors for posterior subcapsular cataract, Ophthalmic Res. 18: 112–116.Google Scholar
  191. Jahngen, J. H., Eisenhauer, D., and Taylor, A., 1986a, Lens proteins are substrates for the reticulocyte ubiquitin conjugation system, Curr. Eye Res. 5: 725–733.PubMedCrossRefGoogle Scholar
  192. Jahngen, J. H., Haas, A. L., Ciechanover, A., Blondin, J., Eisenhauer, D., and Taylor, A., 1986b, The eye lens has an active ubiquitin—protein conjugation system, J. Biol. Chem. 261: 13760–13767.PubMedGoogle Scholar
  193. Jedziniak, J. A., Nicoli, D. F., Baram, H., and Benedek, G. B., 1978, Quantitative verification of the existence of high molecular weight protein aggregates in the intact normal human lens by light-scattering spectroscopy, Invest. Ophthalmol. Vis. Sci. 17: 51–57.PubMedGoogle Scholar
  194. Jedziniak, J. A., Chylack, L. T., Jr., Cheng, H.-M., Gillis, M. K., Kalustian, A. A., and Tung, W. H., 1981, The sorbitol pathway in the human lens: Aldose reductase and polyol dehydrogenase, Invest. Ophthalmol. Vis. Sci. 20: 314–326.PubMedGoogle Scholar
  195. Jedziniak, J., Arredondo, M., and Andley, U., 1987, Oxidative damage to human lens enzymes, Curr. Eye Res. 6: 345–350.PubMedCrossRefGoogle Scholar
  196. Jernigan, H. M., Jr., 1985, Role of hydrogen peroxide in riboflavin-sensitized photodynamic damage to cultured rat lenses, Exp. Eye Res. 41: 121–129.PubMedCrossRefGoogle Scholar
  197. Jernigan, H. M., Jr., Fukui, H. N., Goosey, J. D., and Kinoshita, J. H., 1981, Photodynamic effects of rose bengal or riboflavin on carrier-mediated transport systems in rat lens, Exp. Eye Res. 32: 461–466.PubMedCrossRefGoogle Scholar
  198. Johnson, K. R., Panter, S. S., and Johnson, R. G., 1985. Phosphorylation of lens membranes with a cyclic AMP-dependent protein kinase purified from the bovine lens, Biochim. Biophys. Acta 844: 367–376.PubMedCrossRefGoogle Scholar
  199. Johnson, K. R., Lampe, P. D., Hur, K. C., Louis, C. F., and Johnson, R. G., 1986, A lens intracellular junction protein, MP26, is a phosphoprotein, J. Cell Biol. 102: 1334–1343.PubMedCrossRefGoogle Scholar
  200. Jones, T. R., and Reid, T. W., 1984, Sodium orthovanadate stimulation of DNA synthesis in Nakano mouse lens epithelial cells in serum-free medium, J. Cell. Physiol. 121: 199–205.PubMedCrossRefGoogle Scholar
  201. Kador, P. F., and Kinoshita, J. H., 1984, Diabetic and galactosaemic cataracts, in: Human Cataract Formation, Ciba Foundation Symposium 106 ( J. Nugent and J. Whelan, eds.), Pitman, London, pp. 110–131.Google Scholar
  202. Kador, P. F., Fukui, H. N., Fukushi, S., Jernigan, H. M., Jr., and Kinoshita, J. H., 1980, Philly mouse: A new model of hereditary cataract, Exp. Eye Res. 30: 59–68.PubMedCrossRefGoogle Scholar
  203. Kador, P. F., Robison, W. G., Jr., and Kinoshita, J. H., 1985, The pharmacology of aldose reductase inhibitors, Annu. Rev. Pharmacol. Toxicol. 25: 691–714.PubMedCrossRefGoogle Scholar
  204. Kador, P. F., Akagi, Y., and Kinoshita, J. H., 1986, The effect of aldose reductase and its inhibition on sugar cataract formation, Metabolism (Suppl.) 35: 15–19.CrossRefGoogle Scholar
  205. Kanayama, T., Miyanaga, Y., Horiuchi, K., and Fujimoto, D., 1987, Detection of the cross-linking amino acid, histidinoalanine, in human brown cataractous lens protein, Exp. Eye Res. 44: 165–169.PubMedCrossRefGoogle Scholar
  206. Kawaba, T., Cheng, H.-M., and Kinoshita, J. H., 1986, The accumulation of myoinositol and rubidium ions in galactose-exposed rat lens, Invest. Ophthalmol. Vis. Sci. 27: 1522–1526.PubMedGoogle Scholar
  207. Kinoshita, J. H., 1986, Aldose reductase in the diabetic eye, Am. J. Ophthalmol. 102: 685–692.PubMedGoogle Scholar
  208. Kinoshita, J. H., Merola, L. O., and Dikmak, E., 1962, Osmotic changes in experimental galactose cataracts, Exp. Eye Res. 1: 405–410.PubMedCrossRefGoogle Scholar
  209. Kistler, J., and Bullivant, S., 1987, Protein processing in lens intercellular junctions: Cleavage of MP70 to MP38, Invest. Ophthalmol. Vis. Sci. 28: 1687–1692.PubMedGoogle Scholar
  210. Kistler, J., Kirkland, B., and Bullivant, S., 1985, Identification of a 70,000-D protein in lens membrane junctional domains, J. Cell Biol. 101: 28–35.PubMedCrossRefGoogle Scholar
  211. Kistler, J., Kirkland, B., Gilbert, K., and Bullivant, S., 1986, Aging of lens fibers. Mapping membrane proteins with monoclonal antibodies, Invest. Ophthalmol. Vis. Sci. 27: 772–780.PubMedGoogle Scholar
  212. Kleiman, N. J., Chiesa, R., Gawinowicz-Kolks, M. A., and Spector, A., 1988, Phosphorylation of G3-crystallin B2 (3Bp) in the bovine lens, J. Biol. Chem. 263: 14978–14983.PubMedGoogle Scholar
  213. Klein, B. E. K., Klein, R., and Moss, S. E., 1985, Prevalence of cataracts in a population-based study of persons with diabetes mellitus, Ophthalmology 92: 1191–1196.PubMedGoogle Scholar
  214. Kletzky, D. L., Zing, W. H., and Chylack, L. T., Jr., 1986, The protective effect of glucose on soluble rat lens hexokinase in the presence of oxidative stress, Curr. Eye Res. 5: 433–439.PubMedCrossRefGoogle Scholar
  215. Kodama, T., and Takemoto, L., 1988, Characterization of disulfide-linked crystallins associated with human cataractous lens membranes, Invest. Ophthalmol. Vis. Sci. 29: 145–149.PubMedGoogle Scholar
  216. Kuck, J. F. R., and Kuck, K. D., 1983, The Emory mouse cataract: Loss of soluble protein, glutathione, protein sulfhydryl and other changes, Exp. Eye Res. 36: 351–362.PubMedCrossRefGoogle Scholar
  217. Kuck, J. F. R., Kuwabara, T., and Kuck, K. D., 1981/1982, The Emory mouse cataract: An animal model for human senile cataract, Curr. Eye Res. 1: 643–649.Google Scholar
  218. Kuck, J. F. R., Yu, N.-T., and Askren, C. C., 1982, Total sulfhydryl by Raman spectroscopy in the intact lens of several species: Variations in the nucleus and along the optical axis during aging, Exp. Eye Res. 34: 23–37.PubMedCrossRefGoogle Scholar
  219. Kuszak, J. R., Khan, A. R., and Cenedella, R. J., 1988, An ultrastructural analysis of plasma membrane in the U18666A cataract, Invest. Ophthalmol. Vis. Sci. 29: 261–267.PubMedGoogle Scholar
  220. Lahm, D., Lee, L. K., and Bettelheim, F. A., 1985, Age dependence of freezable and nonfreezable water content of normal human lenses, Invest. Ophthalmol. Vis. Sci. 26: 1162–1165.PubMedGoogle Scholar
  221. Lampe, P. D., Bazzi, M. D., Nelsestuen, G. L., and Johnson, R. G., 1986, Phosphorylation of lens intrinsic membrane proteins by protein kinase C, Eur. J. Biochem. 156: 351–357.PubMedCrossRefGoogle Scholar
  222. Lerman, S., 1980, Radiant Energy and the Eye, Macmillan, New York. Lerman, S., 1983, An experimental and clinical evaluation of lens transparency and aging, J. Gerontol. 38: 293–301.Google Scholar
  223. Lerman, S., 1988, Ocular phototoxicity, N. Engl. J. Med. 319: 1475–1477.PubMedCrossRefGoogle Scholar
  224. Lerman, S., and Zigman, S., 1965, The metabolism of the lens as related to aging and experimental cataractogenesis, Invest. Ophthalmol. 4: 643–660.PubMedGoogle Scholar
  225. Lerman, S., Zigman, S., and Forbes, W. F., 1966, Properties of a cryoprotein in the ocular lens, Biochem. Biophys. Res. Commun. 22: 57–61.PubMedCrossRefGoogle Scholar
  226. Lerman, S., Megaw, J. M., Gardner, K., Ashley, D., Long, R. C., Jr., and Goldstein, J. H., 1983, NMR analyses of the cold cataract. II. Studies on protein solutions, Invest. Ophthalmol. Vis. Sci. 24: 99–105.PubMedGoogle Scholar
  227. Leske, M. C., Chylack, L. T., Jr., Sperduto, R., Khu, P., Wu, S.-Y., and McCarthy, D., 1988, Evaluation of a lens opacities classification system, Arch. Ophthalmol. 106: 327–329.PubMedCrossRefGoogle Scholar
  228. Lewis, B. S., and Harding, J. J., 1988, The major metabolite of bendazac inhibits the glycosylation of soluble lens proteins: A possible mechanism for a delay in cataractogenesis, Exp. Eye Res. 47: 217–225.PubMedCrossRefGoogle Scholar
  229. Lewis, B. S., Rixon, K. C., and Harding, J. J., 1986, Bendazac prevents cyanate binding to soluble lens proteins and cyanate-induced phase-separation opacities in vitro: A possible mechanism by which bendazac could delay cataract, Exp. Eye Res. 43: 973–979.PubMedCrossRefGoogle Scholar
  230. Li, L.-K., and So, L., 1987, Age dependent lipid and protein changes in individual bovine lenses, Curr. Eye Res. 6: 599–605.PubMedCrossRefGoogle Scholar
  231. Li, L.-K., So, L., and Spector, A., 1985, Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses, J. Lipid Res. 26: 600–609.PubMedGoogle Scholar
  232. Li, L.-K., Roy, D., and Spector, A., 1986, Changes in lens protein in concentric fractions from individual normal human lenses, Curr. Eye Res. 5: 127–135.PubMedCrossRefGoogle Scholar
  233. Li, L.-K., So, L., and Spector, A., 1987, Age-dependent changes in the distribution and concentration of human lens cholesterol and phospholipids, Biochim. Biophys. Acta 917: 112–120.PubMedCrossRefGoogle Scholar
  234. Liang, J. N., 1987, Fluorescence study of the effects of aging and diabetes mellitus on human lens a-crystallin, Curr. Eye Res. 6: 351–355.PubMedCrossRefGoogle Scholar
  235. Liang, J. N., and Chylack, L. T., Jr., 1987, Spectroscopic study on the effects of nonenzymatic glycation in human a-crystallin, Invest. Ophthalmol. Vis. Sei. 28: 790–794.Google Scholar
  236. Liang, J. N., and Pelletier, M. R., 1988, Destabilization of lens protein conformation by glutathione mixed disulfide, Exp. Eye Res. 47: 17–25.PubMedCrossRefGoogle Scholar
  237. Liang, J. N., Bose, S. K., and Chakrabarti, B., 1985, Age-related changes in protein conformation in bovine lens crystallins, Exp. Eye Res. 40: 461–469.PubMedCrossRefGoogle Scholar
  238. Liang, J. N., Pelletier, M. R., and Chylack, L. T., Jr., 1988, Front surface fluorometric study of lens insoluble proteins, Curr. Eye Res. 7: 61–67.PubMedCrossRefGoogle Scholar
  239. Liang, J. N., Rossi, M. R., and Andley, U. P., 1989, Fluorescence studies on the age related changes in bovine and human lens membrane structure, Curr. Eye Res. 8: 293–298.PubMedCrossRefGoogle Scholar
  240. Lindley, P. F., Narebor, M. E., Summers, L. J., and Wistow, G. J., 1985, The structure of lens proteins, in: The Ocular Lens. Structure, Function, and Pathology (H. Maisel, ed.), Marcel Dekker, New York, pp. 123–167.Google Scholar
  241. Lipman, R. M., Tripathi, B. J., and Tripathi, R. C., 1988, Cataracts induced by microwave and ionizing radiation, Surv. Ophthalmol. 33: 200–210.PubMedCrossRefGoogle Scholar
  242. Lo, W.-K., and Kuck, J. F. R., 1987, Alterations in fiber cell membranes of Emory mouse cataract: A morphologic study, Curr. Eye Res. 6: 433–444.PubMedCrossRefGoogle Scholar
  243. Lohmann, W., Schmehl, W., and Strobel, J., 1986, Nuclear cataract: Oxidative damage to the lens, Exp. Eye Res. 43: 859–862.PubMedCrossRefGoogle Scholar
  244. Lorand, L., Conrad, S. M., and Velasco, P. T., 1985, Formation of a 55000-weight cross-linked ß crystallin dimer in the Caz+-treated lens. A model for cataract, Biochemistry 24: 1525–1531.PubMedCrossRefGoogle Scholar
  245. Lorand, L., Conrad, S. M., and Velasco, P. T., 1987, Inhibition of ß-crystallin cross-linking in the Cat-treated lens, Invest. Ophthalmol. Vis. Sei. 28: 1218–1222.Google Scholar
  246. Lou, M. F., McKellar, R., and Chyan, O., 1986 Quantitation of lens protein mixed disulfides by ion-exchange chromatography, Exp. Eye Res. 42: 607–616.PubMedCrossRefGoogle Scholar
  247. Lou, M. F., Dickerson, J. E., Jr., Garadi, R., and York, B. M., Jr., 1988, Glutathione depletion in the lens of galactosemic and diabetic rats, Exp. Eye Res. 46: 517–530.PubMedCrossRefGoogle Scholar
  248. Lou, M. F., Garadi, R., Thomas, D. M., Mahendroo, P. P., York, B. M., Jr., and Jernigan, H. M., Jr., 1989, The effect of an aldose reductase inhibitor on lens phosphorylcholine under hyperglycemic conditions: Biochemical and NMR studies, Exp. Eye Res. 48: 11–24.PubMedCrossRefGoogle Scholar
  249. Louis, C. F., Johnson, R., and Tùrnquist, J., 1985a, Identification of the calmodulin-binding components in bovine lens plasma membranes, Eur. J. Biochem. 150: 271–278.PubMedCrossRefGoogle Scholar
  250. Louis, C. F., Johnson, R., Johnson, K., and Tùrnquist, J., 1985b, Characterization of the bovine lens plasma membrane substrates for cAMP-dependent protein kinase, Eur. J. Biochem. 150: 279–286.PubMedCrossRefGoogle Scholar
  251. Louis, C. F., Mickelson, J. R., Tismquist, J., Hur, K. C., and Johnson, R., 1987, Regulation of lens cyclic nucleotide metabolism by Caz+ plus calmodulin, Invest. Ophthalmol. Vis. Sci. 28: 806–814.PubMedGoogle Scholar
  252. Lubsen, N. H., Aarts, H. J. M., and Schoenmakers, J. G. G., 1988, The evolution of lenticular proteins: The Band a-crystallin super gene family, Prog. Biophys. Mol. Biol. 51: 47–76.PubMedCrossRefGoogle Scholar
  253. Lucas, V. A., and Zigler, J. S., Jr., 1987, Transmembrane glucose carriers in the monkey lens, Invest. Ophthalmol. Vis. Sci. 28: 1404–1412.PubMedGoogle Scholar
  254. Lucas, V. A., and Zigler, J. S., Jr., 1988, Identification of the monkey lens glucose transporter by photoaffinity labelling with cytochalasin B, Invest. Ophthalmol. Vis. Sci. 29: 630–635.PubMedGoogle Scholar
  255. Lucas, V. A., Duncan, G., and Davies, P., 1986, Membrane permeability characteristics of perfused human senile cataractous lenses, Exp. Eye Res. 42: 151–165.PubMedCrossRefGoogle Scholar
  256. Maisel, H., 1984, Cytoskeletal proteins of the ageing human lens, in: Human Cataract Formation, Ciba Foundation Symposium 106 ( J. Nugent and J. Whelan, eds.), Pitman, London, pp. 163–176.Google Scholar
  257. Maisel, H., (ed.), 1985, The Ocular Lens: Structure, Function and Pathology, Marcel Dekker, New York. Maisel, H., and Ellis, M., 1984, Cytoskeletal proteins of the aging human lens, Curr. Eye Res. 3: 369–381.Google Scholar
  258. Mandai, K., Chakrabarti, B., Thomson, J., and Siezen, R. J., 1987a, Structure and stability of y-crystallins. Denaturation and proteolysis behavior, J. Biol. Chem. 262: 8096–8102.Google Scholar
  259. Mandai, K., Bose, S. K., Chakrabarti, B., and Siezen, R. J., 1987b, Structure and stability of -y-crystallins. II. Differences in microenvironments and spatial arrangements of cysteine residues, Biochim. Biophys. Acta 911: 277–284.CrossRefGoogle Scholar
  260. Manski, W. J., and Malinowski, K. C., 1980, Regulatory effect of A to B cattle lens a-crystallin subunit ratios on the quaternary structure of macromolecules formed by their assembly, J. Biol. Chem. 255: 1572–1576.PubMedGoogle Scholar
  261. Manski, W., and Malinowski, K., 1985, Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses, Exp. Eye Res. 40: 179–190.PubMedCrossRefGoogle Scholar
  262. Maraini, G., and Pasino, M., 1983, Active and passive rubidium influx in normal human lenses and in senile cataracts, Exp. Eye Res. 33: 543–550.CrossRefGoogle Scholar
  263. Marcantonio, J., and Duncan, G., 1987, Amino acid transport and protein synthesis in human normal and cataractous lenses, Curr. Eye Res. 6: 1299–1308.PubMedCrossRefGoogle Scholar
  264. McDermott, M. J., Chiesa, R., and Spector, A., 1988a, Fee+ oxidation of a-crystallin produces a 43,000 Da aggregate composed of A and B chains cross-linked by non-reducible covalent bonds, Biochem. Biophys. Res. Commun. 157: 626–631.PubMedCrossRefGoogle Scholar
  265. McDermott, M. J., Gawinowicz-Kolks, M. A., Chiesa, R., and Spector, A., 1988b, The disulfide content of calf -y-crystallin, Arch. Biochem. Biophys. 262: 609–619.PubMedCrossRefGoogle Scholar
  266. McFall-Ngai, M. J., Ding, L.-L., Takemoto, L. J., and Horwitz, J., 1985, Spatial and temporal mapping of the age-related changes in human lens crystallins, Exp. Eye Res. 41: 745–758.PubMedCrossRefGoogle Scholar
  267. McFall-Ngai, M., Horwitz, J., Ding, L.-L., and Lacey, L., 1986, Age-dependent changes in the heat-stable crystallin, 3Bp, of the human lens, Curr. Eye Res. 5: 387–394.PubMedCrossRefGoogle Scholar
  268. McNamara, M., and Augusteyn, R. C., 1984, The effects of hydrogen peroxide on lens proteins: A possible model for nuclear cataract, Exp. Eye Res. 38: 45–56.PubMedCrossRefGoogle Scholar
  269. Messmer, M., and Chakrabarti, B., 1988, High-molecular-weight protein aggregates of calf and cow lens: Spectroscopic evaluation, Exp. Eye Res. 47: 173–183.PubMedCrossRefGoogle Scholar
  270. Monnier, V. M., and Cerami, A., 1981, Nonenzymatic browning in vivo: Possible process for aging of long-lived proteins, Science 211: 491–493.PubMedCrossRefGoogle Scholar
  271. Monnier, V. M., and Cerami, A., 1983, Detection of nonenzymatic browning products in the human lens, Biochim. Biophys. Acta 760: 97–760.PubMedCrossRefGoogle Scholar
  272. Monnier, V. M., Stevens, V. J., and Cerami, A., 1979, Nonenzymatic glycosylation, sulfhydryl oxidation, and aggregation of lens proteins in experimental sugar cataracts, J. Exp. Med. 150: 1098–1107.PubMedCrossRefGoogle Scholar
  273. Moormann, R. J. M., den Dunnen, J. T., Heuyerjans, J., Jongbloed, R. J. E., van Leen, R. W., Lubsen, N. H., and Schoenmakers, J. G. G., 1985, Characterization of the rat y-crystallin gene family and its expression in the eye lens, J. Mol. Biol. 182: 419–430.Google Scholar
  274. Mostafapour, M. K., and Schwartz, C. A., 1981/1982, Purification of a heat-stable beta-crystallin polypeptide of the bovine lens, Curr. Eye Res. 1: 517–522.Google Scholar
  275. Mulders, J. W. M., Voorter, C. E. M., Lamers, C., de Haard-Hoeckman, W. A., Montecucco, C., van de Ven, W. J. M., Bloemendal, H., and de Jong, W. W., 1988, MP17, a fiber-specific intrinsic membrane protein from mammalian eye lens, Curr. Eye Res. 7: 207–219.PubMedCrossRefGoogle Scholar
  276. Nakamura, M., Russell, P., Carper, D. A., Inana, G. and Kinoshita, J. H., 1988, Alteration of a developmentally regulated, heat-stable polypeptide in the lens of the Philly mouse, J. Biol. Chem. 263: 19218–19221.PubMedGoogle Scholar
  277. Nene, V., Dunne, D. W., Johnson, K. S., Taylor, D. W., and Cordingley, J. S., 1986, Sequence and expression of a major egg antigen from Schistosoma mansoni. Homologies to heat shock proteins and alphacrystallins, Mol. Biochem. Parasitol. 21: 179–188.PubMedCrossRefGoogle Scholar
  278. Ohrloff, C., and Hockwin, 0., 1983, Lens metabolism and aging: Enzyme activities and enzyme alterations in lenses of different species during the process of aging, J. Gerontol. 38: 271–277.PubMedCrossRefGoogle Scholar
  279. Ohrloff, C., Zierz, S., and Hockwin, O., 1982, Investigations of the enzymes involved in the fructose breakdown in the cattle lens, Ophthalmic Res. 14: 221–229.PubMedCrossRefGoogle Scholar
  280. Ohrloff, C., Hockwin, O., Olson, R., and Dickman, S., 1984, Glutathione peroxidase, glutathione reductase and superoxide dismutase in the aging lens, Curr. Eye Res. 3: 109–115.PubMedCrossRefGoogle Scholar
  281. Oimomi, M., Maeda, Y., Hata, F., Kitamura, Y., Matsumoto, S., Baba, S., Iga, T., and Yamamoto, M., 1988, Glycation of cataractous lens in non-diabetic senile subjects and in diabetic patients, Exp. Eye Res. 46: 415–420.Google Scholar
  282. Okuda, J., Kawamura, M., and Didelot, S., 1987, Anomeric preference in uptake of D-glucose and of D-galactose by rat lenses, Curr. Eye Res. 6: 1223–1226.PubMedCrossRefGoogle Scholar
  283. Ortwerth, B. J., and Olesen, P. R., 1988a, Glutathione inhibits the glycation and crosslinking of lens proteins by ascorbic acid, Exp. Eye Res. 47: 737–750.PubMedCrossRefGoogle Scholar
  284. Ortwerth, B. J., and Olesen, P. R., 1988b, Ascorbic acid-induced crosslinking of lens proteins: Evidence supporting a Maillard reaction, Biochim. Biophys. Acta 956: 10–22.PubMedCrossRefGoogle Scholar
  285. Ortwerth, B. J., Feather, M. S., and Olesen, P. R., 1988, The precipitation and cross-linking of lens crystallins by ascorbic acid, Exp. Eye Res. 47: 155–168.PubMedCrossRefGoogle Scholar
  286. Ozaki, L., Jap, P., and Bloemendal, H., 1985, Protein synthesis in bovine and human nuclear fiber cells, Exp. Eye Res. 41: 569–575.PubMedCrossRefGoogle Scholar
  287. Ozaki, Y., Mizuno, A., Itoh, K., Yoshiura, M. Iwamoto, T., and Iriyama, K., 1983, Raman spectroscopic study of age-related structural changes in the lens proteins of an intact mouse lens, Biochemistry 22: 62546259.Google Scholar
  288. Ozaki, Y., Mizuno, A. Itoh, K., and Iriyama, K., 1987, Inter-and intramolecular disulfide bond formation and related structural changes in the lens proteins. A Raman spectroscopic study in vivo of lens aging, J. Biol. Chem. 262: 15545–15551.Google Scholar
  289. Pande, A., Garner, W. H., and Spector, A., 1979, Glucosylation of human lens protein and cataractogenesis, Biochem. Biophys. Res. Commun. 89: 1260–1266.PubMedCrossRefGoogle Scholar
  290. Pasino, M., and Maraini, G., 1982, Cation pump activity and membrane permeability in human senile cataractous lenses, Exp. Eye Res. 34: 887–893.PubMedCrossRefGoogle Scholar
  291. Perry, R. E., Swamy, M. S., and Abraham, E. C., 1987, Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats, Exp. Eye Res. 44: 269–282.PubMedCrossRefGoogle Scholar
  292. Piatigorsky, J., 1984, Lens crystallins and their gene families, Cell 38: 620–621.PubMedCrossRefGoogle Scholar
  293. Piatigorsky, J., 1987, Gene expression and genetic engineering in the lens, Invest. Ophthalmol. Vis. Sci. 28: 928.Google Scholar
  294. Piatigorsky, J., Kador, P. F., and Kinoshita, J. H., 1980, Differential synthesis and degradation of protein in the hereditary Philly mouse cataract, Exp. Eye Res. 30: 69–78.PubMedCrossRefGoogle Scholar
  295. Piatigorsky, J., Shinohara, T., and Zelenka, P. S. (eds.), 1988a, Molecular Biology of the Eye: Genes, Vision and Ocular Disease, Alan R. Liss, New York.Google Scholar
  296. Piatigorsky, J., O’Brien, W. E., Norman, B. L., Kalumuck, K., Wistow, G. J., Borras, T., Nickerson, J. M., and Wawrousek, E. F., 1988b, Gene sharing by 8-crystallin and argininosuccinate lyase, Proc. Natl. Acad. Sci. USA 85: 3479–3483.PubMedCrossRefGoogle Scholar
  297. Pierscionek-Balcerzak, B., and Augusteyn, R. C., 1985, A new method for studying protein changes in the human lens during ageing and cataract formation, Australian J. Optom. 68: 49–53.Google Scholar
  298. Pierscionek, B. and Augusteyn, R. C., 1988, Protein distribution patterns in concentric layers from single bovine lenses: Changes with development and ageing, Curr. Eye Res. 7:11–23.Google Scholar
  299. Pirie, A., 1951, Composition of ox lens capsule, Biochem. J. 48: 368–371.PubMedGoogle Scholar
  300. Pirie, A., 1965, Glutathione peroxidase in lens and a source of hydrogen peroxide in aqueous humour, Biochem. J. 96: 244–253.PubMedGoogle Scholar
  301. Pirie, A., 1968, Color and solubility of the proteins of human cataracts, Invest. Ophthalmol. 7: 634–650.PubMedGoogle Scholar
  302. Pirie, A., 1971, Formation of N’-formylkynurenine in proteins from lens and other sources by exposure to sunlight, Biochem. J. 125: 203–208.PubMedGoogle Scholar
  303. Quax-Jeuken, Y., Driessen, H., Leunissen, J., Quax, W., de Jong, W., and Bloemendal, H., 1985, Os-Crystallin: Structure and evolution of a distinct member of the 13y-superfamily, EMBO J. 4: 2597–2602.PubMedGoogle Scholar
  304. Rao, G. N., and Cotlier, E., 1986, Free epsilon amino groups and 5-hydroxymethylfurfural contents in clear and cataractous human lenses, Invest. Ophthalmol. Vis. Sci. 27: 98–102.PubMedGoogle Scholar
  305. Rao, G. N., Lardis, M. P., and Cotlier, E., 1985, Acetylation of lens crystallins: A possible mechanism by which aspirin could prevent cataract formation, Biochem. Biophys. Res. Commun. 128: 1125–1132.PubMedCrossRefGoogle Scholar
  306. Rathbun, W. B., 1984, Lenticular glutathione synthesis: Rate-limiting factors in its regulation and decline, Curr. Eye Res. 3: 101–108.PubMedCrossRefGoogle Scholar
  307. Rathbun, W. B., and Bovis, M. G., 1986, Activity of glutathione peroxidase and glutathione reductase in the human lens related to age, Curr. Eye Res. 5: 381–385.PubMedCrossRefGoogle Scholar
  308. Rathbun, W. B., Bovis, M. G., and Holleschau, A. M., 1986, Glutathione peroxidase, glutathione reductase and glutathione- S-transferase activities in the rhesus monkey lens as a function of age, Curr. Eye Res. 5: 195–199.PubMedCrossRefGoogle Scholar
  309. Ray, K., and Harris, H., 1985, Purification of neutral lens endopeptidase: Close similarity to a neutral proteinase in pituitary, Proc. Natl. Acad. Sci. USA 82: 7545–7549.PubMedCrossRefGoogle Scholar
  310. Reddan, J. R., Giblin, F. J., Dziedzic, D. C., McCready, J. P., Schrimscher, L., and Reddy, V. N., 1988, Influence of the activity of glutathione reductase on the response of cultured lens epithelial cells from young and old rabbits to hydrogen peroxide, Exp. Eye Res. 46: 209–221.PubMedCrossRefGoogle Scholar
  311. Reddy, V. N., Lin, L.-R., Arita, T., Zigler, J. S., Jr., and Huang, Q. L., 1988, Crystallins and their synthesis in human lens epithelial cells in tissue culture, Exp. Eye Res. 47: 465–478.PubMedCrossRefGoogle Scholar
  312. Revel, J. P., Nicholson, B., and Yancey, S. B., 1985, Chemistry of gap junctions, Annu. Rev. Physiol. 47: 263–279.PubMedCrossRefGoogle Scholar
  313. Revel, J. P., Yancey, S. B., Nicholson, B., and Hoh, J., 1987, Sequence diversity of gap junction proteins, in: Junctional Complexes of Epithelial Cells, Ciba Foundation Symposium 125 ( G. Bok and S. Clark, eds.), John Wiley and Sons, Chichester, pp. 108–127.Google Scholar
  314. Ringens, P. J., Hoenders, H. J., and Bloemendal, H., 1982, Cell-free translation of human lens polyribosomes, Exp. Eye Res. 34: 831–834.PubMedCrossRefGoogle Scholar
  315. Rintoul, D. A., Cundy, K. V., and Cenedella, R. J., 1987, Physical properties of membranes and membrane lipids from the fiber cell of the U18666A-cataractous rat, Curr. Eye Res. 6: 1343–1348.PubMedCrossRefGoogle Scholar
  316. Roy, D., and Spector, A., 1978, Human insoluble lens protein. II. Isolation and characterization of a 9600 dalton polypeptide, Exp. Eye Res. 26: 445–459.PubMedCrossRefGoogle Scholar
  317. Roy, D., Spector, A., and Farnsworth, P. N., 1979, Human lens membrane: Comparison of major intrinsic polypeptides from young and old lenses isolated by a new methodology, Exp. Eye Res. 28: 353–358.PubMedCrossRefGoogle Scholar
  318. Roy, D., Gamer, M. H., Spector, A., Carper, D., and Russell, P., 1982, Investigation of Nakano lens proteins, Exp. Eye Res. 34: 989–920.CrossRefGoogle Scholar
  319. Roy, D., Chiesa, R., and Spector, A., 1983, Lens calcium activated proteinase: Degradation of vimentin, Biochem. Biophys. Res. Commun. 116: 204–209.PubMedCrossRefGoogle Scholar
  320. Roy, D., Dillon, J., Wada, E., Chaney, W., and Spector, A., 1984, Nondisulfide polymerization of -y-and (3-crystallins in the human lens, Proc. Natl. Acad. Sci. USA 81: 2878–2881.PubMedCrossRefGoogle Scholar
  321. Russell, P., 1984, In vitro alterations similar to posttranslational modification of lens proteins, Invest. Ophthalmol. Vis. Sci. 25: 209–212.Google Scholar
  322. Russell, P., and Sato, S., 1986, A study of lectin-binding to the water-insoluble proteins of the lens, Exp. Eye Res. 42: 95–106.PubMedCrossRefGoogle Scholar
  323. Russell, P., Fukui, H. N., Tsunematsu, Y., Huang, F. L., and Kinoshita, J. H., 1977, Tissue culture of lens epithelial cells from normal and Nakano mice, Invest. Ophthalmol. Vis. Sci. 16: 243–246.PubMedGoogle Scholar
  324. Russell, P., Smith, S. G., Carper, D. A., and Kinoshita, J. H., 1979, Age and cataract-related changes in the heavy molecular weight proteins and gamma crystallin composition of the mouse lens, Exp. Eye Res. 29: 245–255.PubMedCrossRefGoogle Scholar
  325. Russell, P., Carper, D. A., Chiogioji, A., and Reddy, V., 1985, The comparison of human lens crystallins using three monoclonal antibodies, Invest. Ophthamol. Vis. Sci. 26: 1028–1031.Google Scholar
  326. Russell, P., Zelenka, P., Martensen, T., and Reid, T. W., 1987a, Identification of the EDTA-extractable protein in lens as calpactin I, Curr. Eye Res. 6: 533–538.PubMedCrossRefGoogle Scholar
  327. Russell, P., Garland, D., Zigler, J. S., Jr., Meakin, S. O., Tsui, L.-C., and Breitman, M.L., 19876, Aging effects of vitamin C on a human lens protein produced in vitro, FASEB J. 1: 32–35.Google Scholar
  328. Sas, D. F., Sas, M. J., Johnson, K. R., Menko, A. S., and Johnson, R. G., 1985, Junctions between lens fiber cells are labeled with a monoclonal antibody shown to be specific for MP26, J. Cell Biol. 100: 216–225.PubMedCrossRefGoogle Scholar
  329. Scharf, J., and Dovrat, A., 1986, Superoxide dismutase molecules in human cataractous lenses, Ophthalmic Res. 18: 332–337.PubMedCrossRefGoogle Scholar
  330. Scharf, J., Dovrat, A., and Gershon, D., 1987, Defective superoxide dismutase molecules accumulate with age in human lenses, Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 225: 133–136.Google Scholar
  331. Schoenmakers, J. G. G., Den Dunnen, J. T., Moormann, R. J. M., Jongbloed, R., van Leen, R. W., and Lubsen, N. H., 1984, The crystallin gene families, in: Human Cataract Formation, Ciba Foundation Symposium 106 ( J. Nugent and J. Whelan, eds.), Pitman, London, pp. 208–218.Google Scholar
  332. Sethna, S. S., Holleschau, A. M., and Rathbun, W. B., 1982/1983, Activity of glutathione synthesis enzymes in human lens related to age, Curr. Eye Res. 2: 735–742.Google Scholar
  333. Sharma, K. K., and Ortwerth, B. J., 1986, Isolation and characterization of a new aminopeptidase from bovine lens, J. Biol. Chem. 261: 4295–4301.PubMedGoogle Scholar
  334. Sharma, K. K., Olesen, P. R., and Ortwerth, B. J., 1987, The binding and inhibition of trypsin by a-crystallin, Biochim. Biophys. Acta 915: 284–291.PubMedCrossRefGoogle Scholar
  335. Shearer, T. R., and David, L. L., 1982/1983, Role of calcium in selenium cataract, Curr. Eye Res. 2: 777–784.Google Scholar
  336. Shearer, T. R., David, L. L., and Anderson, R. S., 1987, Selenite cataract: A review, Curr. Eye Res. 6: 289–300.PubMedCrossRefGoogle Scholar
  337. Shiloh, Y., Donlon, T., Bruns, G., Breitman, M. L., and Tsui, L.-C., 1986, Assignment of the human y-crystallin gene cluster (CRYG) to the long arm of chromosome 2, region q33–36, Hum. Genet. 73: 1719.CrossRefGoogle Scholar
  338. Shinohara, T., Piatigorsky, J., Carper, D. A., and Kinoshita, J. H., 1982, Crystallin synthesis and crystallin mRNAs in galactosemic rat lenses, Exp. Eye Res. 34: 39–48.PubMedCrossRefGoogle Scholar
  339. Shiono, T., Kador, P. F., and Kinoshita, J. H., 1985, Stimulation of the hexose monophosphate pathway by pyrroline-5-carboxylate reductase in the lens, Exp. Eye Res. 41: 767–775.PubMedCrossRefGoogle Scholar
  340. Siezen, R. J., Fisch, M. R., Slingsby, C., and Benedek, G. B., 1985, Opacification of y-crystall in solutionsGoogle Scholar
  341. from calf lens in relation to cold cataract formation, Proc. Natl. Acad. Sci. USA 82:1701–1705.Google Scholar
  342. Siezen, R. J., Coppin, C. M., Kaplan, E. D., Dwyer, D., and Thomson, J. A., 1989, Oxidative modifications to crystallins induced in calf lenses in vitro by hydrogen peroxide, Exp. Eye Res. 48: 225–235.PubMedCrossRefGoogle Scholar
  343. Slingsby, C., 1985, Structural variation in lens crystallins, Trends Biochem. Sci. 10: 281–284.CrossRefGoogle Scholar
  344. Slingsby, C., and Miller, L. R., 1983, Purification and crystallization of mammalian lens y-crystallins, Exp. Eye Res. 37: 517–530.PubMedCrossRefGoogle Scholar
  345. Slingsby, C., Driessen, H. P. C., Mahadevan, D., Bax, B., and Blundell, T. L., 1988, Evolutionary and functional relationships between the basic and acidic 3-crystallins, Exp. Eye Res. 46: 375–403.PubMedCrossRefGoogle Scholar
  346. Sparkes, R. S., Mohandas, T., Heinzmann, C., Gorin, M. B., Horwitz, J., Law, M. L., Jones, C. A., and Bateman, J. B., 1986, The gene for the major intrinsic protein (MIP) of the ocular lens is assigned to human chromosome 12cen-q14, Invest. Ophthalmol. Vis. Sci. 27: 1351–1354.PubMedGoogle Scholar
  347. Spector, A., 1984a, The search for a solution to senile cataracts, Invest. Ophthalmol. Vis. Sci. 25: 130–146.PubMedGoogle Scholar
  348. Spector, A., 1984b, Oxidation and cataract, in: Human Cataract Formation, Ciba Foundation Symposium 106 ( J. Nugent and J. Whelan, eds.), Pitman, London, pp. 48–64.Google Scholar
  349. Spector, A., 1985, Aspects of the biochemistry of cataract, in: The Ocular Lens. Structure, Function, and Pathology ( H. Maisel, ed.), Marcel Dekker, New York, pp. 405–438.Google Scholar
  350. Spector, A., and Garner, W. H., 1981, Hydrogen peroxide and human cataract, Exp. Eye Res. 33: 673–681.PubMedCrossRefGoogle Scholar
  351. Spector, A., and Roy, D., 1978, Disulfide-linked high molecular weight protein associated with human cataract, Proc. Nad. Acad. Sci. USA 75: 3244–3248.CrossRefGoogle Scholar
  352. Spector, A., Freund, T., Li, L.-K., and Augusteyn, R. C., 1971, Age-dependent changes in the structure of alpha crystallin, Invest. Ophthalmol. 10: 677–686.PubMedGoogle Scholar
  353. Spector, A., Garner, M. H., Garner, W. H., Roy, D., Farnsworth, P., and Shyne, S., 1979, An extrinsic membrane polypeptide associated with high-molecular-weight protein aggregates in human cataract, Science 204: 1323–1326.PubMedCrossRefGoogle Scholar
  354. Spector, A., Chiesa, R., Sredy, J., and Garner, W., 1985, cAMP-dependent phosphorylation of bovine lens a-crystallin, Proc. Natl. Acad. Sci. USA 82: 4712–4716.Google Scholar
  355. Spector, A., Wang, G.-M., and Huang, R.-R. C., 1986, A new HPLC method to determine glutathione-protein mixed disulfide, Curr. Eye Res. 5: 47–51.PubMedCrossRefGoogle Scholar
  356. Spector, A., Huang, R.-R. C., Wang, G.-M., Schmidt, C., Yan, G.-Z., and Chifflet, S., 1987, Does elevated glutathione protect the cell from H»2 insult? Exp. Eye Res. 45: 453–465.PubMedCrossRefGoogle Scholar
  357. Spector, A., Yan, G.-Z., Huang, R.-R. C., McDermott, M. J., Gascoyne, P. R. C., and Pigiet, V., 1988, The effect of H»2 upon thioredoxin-enriched lens epithelial cells, J. Biol. Chem. 263: 4984–4990.PubMedGoogle Scholar
  358. Srivastava, O. P., 1988a, Age-related increase in concentration and aggregation of degraded polypeptides in human lenses, Exp. Eye Res. 47: 525–543.PubMedCrossRefGoogle Scholar
  359. Srivastava, O. P., 19886, Characterization of a highly purified membrane proteinase from bovine lens, Exp. Eye Res. 46: 269–283.Google Scholar
  360. Srivastava, O. P., and Ortwerth, B. J., 1983, Isolation and characterization of a 25K serine proteinase from bovine lens cortex, Exp. Eye Res. 37: 597–612.PubMedCrossRefGoogle Scholar
  361. Srivastava, O. P., and Ortwerth, B. J., 1989, The effects of aging and cataract formation on the trypsin inhibitor activity of human lens, Exp. Eye Res. 48: 25–36.PubMedCrossRefGoogle Scholar
  362. Stambolian, D., Scarpino-Myers, V., Eagle, R. C., Jr., Hodes, B., and Harris, H., 1986, Cataracts in patients heterozygous for galactokinase deficiency, Invest. Ophthalmol. Vis. Sci. 27: 429–433.PubMedGoogle Scholar
  363. Stevens, V. J., Rouzer, C. A., Monnier, V. M., and Cerami, A., 1978, Diabetic cataract formation: Potential role of glycosylation of lens crystallins, Proc. Natl. Acad. Sci. USA 75: 2918–2922.PubMedCrossRefGoogle Scholar
  364. Summers, L. J., Slingsby, C., Blundell, T. L., den Dunnen, J. T., Moormann, R. J. M., and Schoenmakers, J. G. G., 1986, Structural variation in mammalian -y-crystallins based on computer graphics analyses of human, rat and calf sequences. 1. Core packing and surface properties, Exp. Eye Res. 43: 77–92.PubMedCrossRefGoogle Scholar
  365. Swamy, M. S., and Abraham, E. C., 1987, Lens protein composition, glycation and high molecular weight aggregation in aging rats, Invest. Ophthalmol. Vis. Sci. 28: 1693–1701.PubMedGoogle Scholar
  366. Swanson, A. A., Davis, R. M., Meinhardt, N. C., Kuck, K. D., and Kuck, J. F. R., Jr., 1985, Proteases in the Emory mouse cataract, Invest. Ophthalmol. Vis. Sci. 26: 1035–1037.PubMedGoogle Scholar
  367. Takehana, M., and Takemoto, L., 1987, Quantitation of membrane-associated crystallins from aging and cataractous human lenses, Invest. Ophthalmol. Vis. Sci. 28: 780–784.PubMedGoogle Scholar
  368. Takemoto, L. J., and Hansen, J. S., 1982, Intermolecular disulfide bonding of lens membrane proteins during human cataractogenesis, Invest. Ophthalmol. Vis. Sci. 22: 336–342.PubMedGoogle Scholar
  369. Takemoto, L., and Takehana, M., 1986a, Major intrinsic polypeptide (MIP26K) from human lens membrane: Characterization of low-molecular-weight forms in the aging human lens, Exp. Eye Res. 43: 661–667.PubMedCrossRefGoogle Scholar
  370. Takemoto, L., and Takehana, M., 19866, Covalent change of major intrinsic polypeptide (MIP26K) of lens membrane during human senile cataractogenesis, Biochem. Biophys. Res. Commun. 135: 965–971.Google Scholar
  371. Takemoto, L. J., Hansen, J. S., and Horwitz, J., 1981, Interspecies conservation of the main intrinsic polypeptide (MIP) of the lens membrane, Comp. Biochem. Physiol. 68B: 101–106.Google Scholar
  372. Takemoto, L. J., Hansen, J. S., and Horwitz, J., 1985, Antisera to synthetic peptides of lens MIP26K (major intrinsic polypeptide): Characterization and use as site-specific probes of membrane changes in the aging human lens, Exp. Eye Res. 41: 415–422.PubMedCrossRefGoogle Scholar
  373. Takemoto, L., Takehana, M., and Horwitz, J., 1986, Antisera to synthetic peptides of MIP26K as probes of membrane changes during human cataractogenesis, Exp. Eye Res. 42: 497–501.PubMedCrossRefGoogle Scholar
  374. Takemoto, L., Kodama, T., and Takemoto, D., 1987a, Antisera to synthetic peptides of MIP26K as probes of changes in opaque vs. transparent regions within the same human cataractous lens, Exp. Eye Res. 45: 179–183.PubMedCrossRefGoogle Scholar
  375. Takemoto, L., Kodama, T., and Takemoto, D., 1987b, Covalent changes at the N- and C-terminal regions of gamma crystallin during aging of the normal human lens, Exp. Eye Res. 45: 207–214.PubMedCrossRefGoogle Scholar
  376. Takemoto, L., Takemoto, D., Brown, G., Takehana, M., Smith, J., and Horwitz, J., 1987c, Cleavage from the N-terminal region of I3Bp crystallin during aging of the human lens, Exp. Eye Res. 45: 385–392.PubMedCrossRefGoogle Scholar
  377. Takemoto, L., Kodama, T., Wolfe, J., and Chylack, L., 1987d, Comparison of microdissected sections from the human cataractous lens by antisera to synthetic peptides, Invest. Ophthalmol. Vis. Sci. 28: 1210–1213.PubMedGoogle Scholar
  378. Takemoto, L., Kuck, J., and Kuck, K., 1988, Changes in the major intrinsic polypeptide (MIP26K) during opacification of the Emory mouse lens, Exp. Eye Res. 47: 329–336.PubMedCrossRefGoogle Scholar
  379. Takemoto, L., Straatsma, B., and Horwitz, J., 1989, Immunochemical characterization of the major low molecular weight polypeptide (10K) from human cataractous lenses, Exp. Eye Res. 48: 261–270.PubMedCrossRefGoogle Scholar
  380. Taylor, A., and Davies, K. J. A., 1987, Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens, Free Radical Biol. Med. 3: 371–377.CrossRefGoogle Scholar
  381. Taylor, A., Surgenor, T., Thomson, D. K. R., Graham, R. J., and Oettgen, H., 1984, Comparison of leucine aminopeptidase from human lens, beef lens and kidney, and hog lens in kidney, Exp. Eye Res. 38: 217–329.PubMedCrossRefGoogle Scholar
  382. Taylor, H. R., West, S. K., Rosenthal, F. S., Munoz, B., Newland, H. S., Abbey, H., and Emmett, E. A., 1988, Effect of ultraviolet radiation on cataract formation, N. Engl. J. Med. 319: 1429–1433.PubMedCrossRefGoogle Scholar
  383. Thomson, J. A., and Augusteyn, R. C., 1985, Ontogeny of human lens crystallins, Exp. Eye Res. 40: 393–410.PubMedCrossRefGoogle Scholar
  384. Thomson, J. A., and Augusteyn, R. C., 1988, On the structure of a-crystallin: The minimum molecular weight, Curr. Eye Res. 7: 563–569.PubMedCrossRefGoogle Scholar
  385. Thomson, J. A., Siezen, R. J., Kaplan, E. D., Messmer, M., and Chakrabarti, B., 1989, Comparative studies of ßs-crystallins from human, bovine, rat and rabbit lenses, Curr. Eye Res. 8: 139–149.PubMedCrossRefGoogle Scholar
  386. Tomba, M. C., Gandolfi, S. A., and Maraini, G., 1984/1985, Search for an oxidative stress in human senile cataract. Hydrogen peroxide and ascorbic acid in the aqueous humour and malondialdehyde in the lens, Lens Res. 2: 263–276.Google Scholar
  387. Torriglia, A., and Zigman, S., 1988, The effect of near-UV light on Na-K-ATPase of the rat lens, Curr. Eye Res. 7: 539–548.PubMedCrossRefGoogle Scholar
  388. Tsubota, K., Laing, R. A., and Kenyon, K. R., 1987, Noninvasive measurements of pyridine nucleotide and flavoprotein in the lens, Invest. Ophthalmol. Vis. Sci. 28: 785–789.PubMedGoogle Scholar
  389. Tung, W. H., Chylack, L. T., Jr., and Andley, U. P., 1988, Lens hexokinase deactivation by near-UV irradiation, Curr. Eye Res. 7: 257–263.PubMedCrossRefGoogle Scholar
  390. Uga, S., Kador, P. F., and Kuwabara, T., 1980, Cytological study of Philly mouse cataract, Exp. Eye Res. 30: 79–92.PubMedCrossRefGoogle Scholar
  391. van den Eijnden-van Raaij, A. J. M., Feijen, A., and Snoek, G. T., 1987, EDTA-extractable proteins from calf lens fiber membranes are phosphorylated by Cat+-phospholipid-dependent protein kinase, Exp. Eye Res. 45: 215–225.CrossRefGoogle Scholar
  392. van den Heuvel, R., Hendriks, W., Quax, W., and Bloemendal, H., 1985, Complete structure of the hamster aA crystallin gene, J. Mol. Biol. 185: 273–284.PubMedCrossRefGoogle Scholar
  393. van den Oetelaar, P. J. M., Clauwaert, J., van Laethem, M., and Hoenders, H. J., 1985, The influence of isolation conditions on the molecular weight of bovine a-crystallin, J. Biol. Chem. 260: 14030–14034.PubMedGoogle Scholar
  394. van Heyningen, R., 1957, mesolnositol in the lens of mammalian eyes, Biochem. J. 65: 24–28.Google Scholar
  395. van Heyningen, R., 1959, Formation of polyols by the lens of the rat with “sugar” cataract, Nature 184: 194–195.CrossRefGoogle Scholar
  396. van Heyningen, R., 1962, The sorbitol pathway in the lens, Exp. Eye Res. 1: 396–404.CrossRefGoogle Scholar
  397. van Heyningen, R., 1971, Fluorescent glucoside in the human lens, Nature 230: 393–394.PubMedCrossRefGoogle Scholar
  398. van Heyningen, R., and Harding, J. J., 1986, Do aspirin-like analgesics protect against cataract?, Lancet 1: 1111–1113.PubMedCrossRefGoogle Scholar
  399. van Heyningen, R., and Harding, J. J., 1988, A case-control study of cataract in Oxfordshire: Some risk factors, Br. J. Ophthalmol. 72: 804–808.PubMedCrossRefGoogle Scholar
  400. Varma, S. D., Chand, D., Sharma, Y. R., Kuck, J. F., Jr., and Richards, R. D., 1984, Oxidative stress on lens and cataract formation: Role of light and oxygen, Curr. Eye Res. 3: 35–57.PubMedCrossRefGoogle Scholar
  401. Varma, S. D., Morris, S. M., Bauer, S. A., and Koppenol, W. H., 1986, In vitro damage to rat lens by xanthine—xanthine oxidase: Protection by ascorbate, Exp. Eye Res. 43: 1067–1076.Google Scholar
  402. Velasco, P. T., and Lorand, L., 1987, Acceptor-donor relationships in the transglutaminase-mediated cross-linking of lens 13-crystallin subunits, Biochemistry 26: 4629–4634.PubMedCrossRefGoogle Scholar
  403. Vivekanandan, S., and Lou, M. F., 1989, Evidence for the presence of phosphoinositide cycle and its involvement in cellular signal transduction in the rabbit lens, Curr. Eye Res. 8: 101–111.PubMedCrossRefGoogle Scholar
  404. Voorter, C. E. M., Mulders, J. W. M., Bloemendal, H., and de Jong, W. W., 1986, Some aspects of the phosphorylation of a-crystallin A, Eur. J. Biochem. 160: 203–210.PubMedCrossRefGoogle Scholar
  405. Wagner, B. J., Margolis, J. W., and Abramovitz, A. S., 1986a, The bovine lens neutral proteinase comprises a family of cysteine-dependent proteolytic activities, Curr. Eye Res. 5: 863–868.PubMedCrossRefGoogle Scholar
  406. Wagner, B. J., Margolis, J. W., Garland, D., and Roseman, J. E., 1986b, Bovine lens neutral proteinase preferentially hydrolyses oxidatively modified glutamine synthetase, Exp. Eye Res. 43: 1141–1143.PubMedCrossRefGoogle Scholar
  407. Wang, X., and Bettelheim, F. A., 1988, Distribution of total and non-freezable water contents of galactosemic rat lenses, Curr. Eye Res. 7: 771–776.PubMedCrossRefGoogle Scholar
  408. Watanabe, K., Fujii, Y., Nakayama, K., Ohkubo, H., Kuramitsu, S., Kagamiyama, H., Nakanishi, S., and Hayaishi, 0., 1988, Structural similarity of bovine lung prostaglandin F synthase to lens e-crystallin of the European common frog, Proc. Natl. Acad. Sci. USA 85:11–15.Google Scholar
  409. West, S. K., Munoz, B. E., Newland, H. S., Emmett, E. A., and Taylor, H. R., 1987, Lack of evidence for aspirin use and prevention of cataracts, Arch. Ophthalmol. 105: 1229–1231.PubMedCrossRefGoogle Scholar
  410. West, S. K., Rosenthal, F., Newland, H. S., and Taylor, H. R., 1988, Use of photographic techniques to grade nuclear cataracts, Invest. Ophthalmol. Vis. Sci. 29: 73–77.PubMedGoogle Scholar
  411. Wiegand, R. D., Jose, J. G., Rapp, L. M., and Anderson, R. E., 1984, Free radicals and damage to ocular tissues, in: Free Radicals in Molecular Biology, Aging, and Disease ( D. Armstrong, R. S. Sohol, R. G. Cutler, and T. F. Slater, eds.), Raven Press, New York, pp. 317–353.Google Scholar
  412. Williams, E. H., Chaplain, T. L., and Meakem, T., 1985, A temporal and spatial study of the synthesis and degradation of water-soluble and insoluble proteins in galactosemic rat lenses, Exp. Eye Res. 41: 475–486.PubMedCrossRefGoogle Scholar
  413. Williams, W. F., and Odom, J. D., 1987, The utilization of 13C and lIP nuclear magnetic resonance spectroscopy in the study of the sorbitol pathway and aldose reductase inhibition in intact rabbit lenses, Exp. Eye Res. 44: 717–730.PubMedCrossRefGoogle Scholar
  414. Williams, W. F., Austin, C. D., Farnsworth, P. N., Groth-Vasselli, B., Willis, J. A., and Schleich, T., 1988, Phosphorus and proton magnetic resonance spectroscopic studies on the relationship between transparency and glucose metabolism in the rabbit lens, Exp. Eye Res. 47: 97–112.PubMedCrossRefGoogle Scholar
  415. Winkler, B. S., 1987, In vitro oxidation of ascorbic acid and its prevention by GSH, Biochim. Biophys. Acta 925: 258–264.CrossRefGoogle Scholar
  416. Winkler, B. S., and Solomon, F., 1988, High activities of NADP+-dependent isocitrate dehydrogenase and malic enzyme in rabbit lens epithelial cells, Invest. Ophthalmol. Vis. Sci. 29: 821–823.PubMedGoogle Scholar
  417. Wistow, G., and Piatigorsky, J., 1987, Recruitment of enzymes as lens structural proteins, Science 236: 1554–1556.PubMedCrossRefGoogle Scholar
  418. Wistow, G. J., and Piatigorsky, J., 1988, Lens crystallins: The evolution and expression of proteins for a highly specialized tissue, Annu. Rev. Biochem. 57: 479–504.PubMedCrossRefGoogle Scholar
  419. Wistow, G., Turnell, B., Summers, L., Slingsby, C., Moss, D., Miller, L., Lindley, P., and Blundell, T., 1983, X-ray analysis of the eye lens protein y-II crystallin at 1.9 A resolution, J. Mol. Biol. 170: 175–202.PubMedCrossRefGoogle Scholar
  420. Wistow, G. J., Mulders, J. W. M., and de Jong, W. W., 1987, The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses, Nature 326: 622–624.PubMedCrossRefGoogle Scholar
  421. Wolfe, J. K., and Chylack, L. T., Jr., 1986, Glucose metabolism by human cataracts in culture, Exp. Eye Res. 43: 243–249.PubMedCrossRefGoogle Scholar
  422. Wolff, S. P., Wang, G.-M., and Spector, A., 1987, Pro-oxidant activation of ocular reductants. 1. Copper and riboflavin stimulate ascorbate oxidation causing lens epithelial cytotoxicity in vitro, Exp. Eye Res. 45: 777–789.PubMedCrossRefGoogle Scholar
  423. Yancey, S. B., Koh, K., Chung, J., and Revel, J.-P., 1988, Expression of the gene for main intrinsic polypeptide (MIP): Separate spatial distributions of MIP and 13-crystallin gene transcripts in rat lens development, J. Cell Biol. 106: 705–714.PubMedCrossRefGoogle Scholar
  424. Yoshida, H., Murachi, T., and Tsukahara, I., 1984, Limited proteolysis of bovine lens et-crystallin by calpain, A Caz+- dependent cysteine proteinase, isolated from the same tissue, Biochim. Biophys. Acta 798: 252–259.PubMedCrossRefGoogle Scholar
  425. Yoshida, H., Murachi, T., and Tsukahara, I., 1985, Distribution of calpain I, calpain II, and calpastatin in bovine lens, Invest. Ophthalmol. Vis. Sci. 26: 953–956.PubMedGoogle Scholar
  426. Yoshida, H., Yumoto, N., Tsukahara, I., and Murachi, T., 1986, The degradation of a-crystallin at its carboxylterminal portion by calpain in bovine lens, Invest. Ophthalmol. Vis. Sci. 27: 1269–1273.PubMedGoogle Scholar
  427. Yu, N.-T., DeNagel, D. C., Pruett, P. L., and Kuck, J. F. R., Jr., 1985, Disulfide bond formation in the eye lens, Proc. Natl. Acad. Sci. USA 82: 7965–7968.PubMedCrossRefGoogle Scholar
  428. Yu, N.-T., Cai, M.-Z., Ho, D. J.-Y., and Kuck, J. F. R., Jr., 1988, Automated laser-scanning-microbeam fluorescence/Raman image analysis of human lens with multichannel detection: Evidence for metabolic production of a green fluorophor, Proc. Natl. Acad. Sci. USA 85: 103–106.PubMedCrossRefGoogle Scholar
  429. Zampighi, G. A., Hall, J. E., and Kreman, M., 1985, Purified lens junctional protein forms channels in planar lipid films, Proc. Natl. Acad. Sci. USA 82: 8468–8472.PubMedCrossRefGoogle Scholar
  430. Zelenka, P. S., 1980, Changes in phosphatidylinositol metabolism during differentiation of lens epithelial cells into lens fiber cells in the embryonic chick, J. Biol. Chem. 255: 1296–1300.PubMedGoogle Scholar
  431. Zelenka, P. S., 1984, Lens lipids, Curr. Eye Res. 3: 1337–1359.PubMedCrossRefGoogle Scholar
  432. Zigler, J. S., Jr., and Goosey, J. D., 1981, Photosensitized oxidation in the ocular lens: Evidence for photosensitizers endogenous to the human lens, Photochem. Photobiol. 33: 869–874.PubMedCrossRefGoogle Scholar
  433. Zigler, J. S., Jr., and Goosey, J. D., 1984, Singlet oxygen as a possible factor in human senile nuclear cataract development, Curr. Eye Res. 3: 59–65.PubMedCrossRefGoogle Scholar
  434. Zigler, J. S., Jr., and Horwitz, J., 1981, Immunochemical studies on the major intrinsic polypeptides from human lens membrane, Invest. Ophthalmol. Vis. Sci. 21: 46–51.PubMedGoogle Scholar
  435. Zigler, J. S., Jr., Carper, D. A., and Kinoshita, J. H., 1981, Changes in lens crystallins during cataract development in the Philly mouse, Ophthalmic Res. 13: 237–251.CrossRefGoogle Scholar
  436. Zigler, J. S., Jr., Jernigan, H. M., Jr., Garland, D., and Reddy, V. N., 1985a, The effects of “Oxygen radicals” generated in the medium on lenses in organ culture: Inhibition of damage by chelated iron, Arch. Biochem. Biophys. 241: 163–172.PubMedCrossRefGoogle Scholar
  437. Zigler, J. S., Jr., Russell, P., Takemoto, L. J., Schwab, S. J., Hansen, J. S., Horwitz, J., and Kinoshita, J. H., 1985b, Partial characterization of three distinct populations of human y-crystallins, Invest. Ophthalmol. Vis. Sci. 26: 525–531.PubMedGoogle Scholar
  438. Zigman, S., 1985, Photobiology of the lens, in: The Ocular Lens. Structure, Function, and Pathology ( H. Maisel, ed.), Marcel Dekker, New York, pp. 301–347.Google Scholar
  439. Zigman, S., Paxhia, T., and Waldron, W., 1988, Effects of near-UV radiation on the protein of the grey squirrel lens, Curr. Eye Res. 7: 531–537.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Elaine R. Berman
    • 1
  1. 1.Hadassah-Hebrew University Medical SchoolJerusalemIsrael

Personalised recommendations