Selected Topics in Biochemistry Relevant to the Eye

  • Elaine R. Berman
Part of the Perspectives in Vision Research book series (PIVR)


The topics selected for inclusion in this chapter represent only a small fraction of the many fields of biochemistry and molecular biology. However, a brief introduction to general concepts as well as specific fields of research currently under active investigation in ocular tissues has been included to serve as background for Chapters 2 through 7. The material in the first section on cellular biochemistry is based almost entirely on several general texts (Lehninger, 1982; Darnell et al., 1986; Stryer, 1988; Alberts et al., 1989). For the remaining sections, additional source material is cited when relevant.


Retinoic Acid Adenylate Cyclase Guanylate Cyclase Atrial Natriuretic Factor Ocular Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev. 38: 227–272.PubMedGoogle Scholar
  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1989, Molecular Biology of the Cell, 2nd ed. Garland Publishing, New York.Google Scholar
  3. Anand-Srivastava, M. B., Srivastava, A. K., and Cantin, M., 1987, Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase, J. Biol. Chem. 262: 4931–4934.PubMedGoogle Scholar
  4. Applebury, M. L., and Hargrave, P. A., 1986, Molecular biology of the visual pigments, Vision Res. 26: 1881–1895.PubMedCrossRefGoogle Scholar
  5. Argraves, W. S., Suzuki, S., Arai, H., Thompson, K., Pierschbacher, M. D., and Ruoslahti, E., 1987, Amino acid sequence of the human fibronectin receptor, J. Cell Biol. 105: 1183–1190.PubMedCrossRefGoogle Scholar
  6. Ashendel, C. L., 1985, The phorbol ester receptor: A phospholipid-regulated protein kinase, Biochim. Biophys. Acta 822: 219–242.PubMedCrossRefGoogle Scholar
  7. Ashkenazi, A., Winslow, J. W., Peralta, E. G., Peterson, G. L., Schimerlik, M. I., Capon, D. J., and Ramachandran, J., 1987, An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover, Science 238: 672–675.PubMedCrossRefGoogle Scholar
  8. Benovic, J. L., Strasser, R. H., Caron, M. G., and Lefkowitz, R. J., 1986, ß-Adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor, Proc. Natl. Acad. Sci. USA 83: 2797–2801.PubMedCrossRefGoogle Scholar
  9. Benovic, J. L., Mayor, F., Jr., Staniszewski, C., Lefkowitz, R. J., and Caron, M. G., 1987, Purification and characterization of the ß-adrenergic receptor kinase, J. Biol. Chem. 262: 9026–9032.PubMedGoogle Scholar
  10. Benovic, J. L., Bouvier, M., Caron, M. G., and Lefkowitz, R. J., 1988, Regulation of adenylyl cyclase-coupled 3-adrenergic receptors, Annu. Rev. Cell Biol. 4: 405–428.PubMedCrossRefGoogle Scholar
  11. Bentz, H., Morris, N. P., Murray, L. W., Sakai, L. Y., Hollister, D. W., and Burgeson, R. E., 1983, Isolation and partial characterization of a new human collagen with an extended triple-helical structural domain, Proc. Natl. Acad. Sci. USA 80: 3168–3172.PubMedCrossRefGoogle Scholar
  12. Benya, P. D., and Padilla, S. R., 1986, Isolation and characterization of type VIII collagen synthesized by cultured rabbit corneal endothelial cells, J. Biol. Chem. 261: 4160–4169.PubMedGoogle Scholar
  13. Berman, E. R. 1982, Sphingolipidoses and neuronal ceroid-lipofuscinosis, in: Pathobiology of Ocular Disease, Part B ( A. Garner and G. K. Klintworth, eds.), Marcel Dekker, New York, pp. 897–929.Google Scholar
  14. Berman, E. R., Segal, N., and Feeney, L., 1979, Subcellular distribution of free and esterified forms of vitamin A in the pigment epithelium of the retina and in liver, Biochim. Biophys. Acta 572: 167–177.PubMedCrossRefGoogle Scholar
  15. Berridge, M. J., 1987, Inositol trisphosphate and diacylglycerol: Two interacting second messengers, Annu. Rev. Biochem. 56: 159–193.PubMedCrossRefGoogle Scholar
  16. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  17. Bhuyan, K. C., and Bhuyan, D. K., 1977, Regulation of hydrogen peroxide in eye humors. Effect of 3-amino-IH-1,2,4-triazole on catalase and glutathione peroxidase of rabbit eye, Biochim. Biophys. Acta 497: 641–651.PubMedCrossRefGoogle Scholar
  18. Bhuyan, K. C., and Bhuyan, D. K., 1978, Superoxide dismutase of the eye. Relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage, Biochim. Biophys. Acta 542: 28–38.PubMedCrossRefGoogle Scholar
  19. Blomhoff, R., Norum, K. R., and Berg, T., 1985, Hepatic uptake of [3H]retinol bound to the serum retinol binding protein involves both parenchymal and perisinusoidal stellate cells, J. Biol. Chem. 260: 13571–13575.PubMedGoogle Scholar
  20. Bolmer, S. D., and Wolf, G., 1982, Retinoids and phorbol esters alter release of fibronectin from enucleated cells, Proc. Natl. Acad. Sci. USA 79: 6541–6545.PubMedCrossRefGoogle Scholar
  21. Bonner, T. I., Buckley, N. J., Young, A. C., and Brann, M. R., 1987, Identification of a family of muscarinic acetylcholine receptor genes, Science 237: 527–532.PubMedCrossRefGoogle Scholar
  22. Bouvier, M., Leeb-Lundberg, L. M. F., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J., 1987, Regulation of adrenergic receptor function by phosphorylation, J. Biol. Chem. 262: 3106–3113.PubMedGoogle Scholar
  23. Bruckner, P., Vaughan, L., and Winterhalter, K. H., 1985, Type IX collagen from sternal cartilage of chicken embryo contains covalently bound glycosaminoglycans, Proc. Natl. Acad. Sci. USA 82: 2608–2612.PubMedCrossRefGoogle Scholar
  24. Bulkley, G. B., 1983, The role of oxygen free radicals in human disease processes, Surgery 94:407–411. Burgeson, R. E., 1988, New collagens, new concepts, Annu. Rev. Cell Biol. 4: 551–577.Google Scholar
  25. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Rimer, C., 1988, Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton, Annu. Rev. Cell Biol. 4: 487–525.PubMedCrossRefGoogle Scholar
  26. Burton, G. W., and Ingold, K. U., 1984, 3-Carotene: An unusual type of lipid antioxidant, Science 224: 569–573.Google Scholar
  27. Cadenas, E., 1989, Biochemistry of oxygen toxicity, Annu. Rev. Biochem. 58: 79–110.PubMedCrossRefGoogle Scholar
  28. Capdevila, J., Yadagiri, P., Manna, S., and Falck, J. R., 1986, Absolute configuration of the hydroxyeicosatetraenoic acids (HETEs) formed during catalytic oxygenation of arachidonic acid by microsomal cytochrome P-450, Biochem. Biophys. Res. Commun. 141: 1007–1011.PubMedCrossRefGoogle Scholar
  29. Chader, G. J., 1982, Retinoids in ocular tissues: Binding proteins, transport, and mechanism of action, in: Cell Biology of the Eye ( D. S. McDevitt, ed.), Academic Press, New York, pp. 377–433.Google Scholar
  30. Chader, G. J., 1984, Vitamin A, in: Pharmacology of the Eye, Handbook of Pharmacology, Vol. 69 ( M. L. Sears, ed.), Springer-Verlag, Berlin, pp. 367–384.Google Scholar
  31. Chytil, F., 1984, Retinoic acid: Biochemistry, pharmacology, toxicology, and therapeutic use, Pharmacol. Rev. 36: 93S - 100S.PubMedGoogle Scholar
  32. Chytil, F., and Ong, D. E., 1984, Cellular retinoid binding proteins, in: The Retinoids, Vol. 2 ( M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds.), Academic Press, New York, pp. 89–123.Google Scholar
  33. Cockcroft, S., 1987, Polyphosphoinositide phosphodiesterase: Regulation by a novel guanine nucleotide binding protein, GP, Trends Biochem. Sci. 12: 75–78.CrossRefGoogle Scholar
  34. Colantuoni, V., Cortese, R., Nilsson, M., Lundvall, J., Bavik, C.-O., Eriksson, U., Peterson, P. A., and Sundelin, J., 1985, Cloning and sequencing of a full length cDNA corresponding to human cellular retinolbinding protein, Biochem. Biophys. Res. Commun. 130: 431–439.PubMedCrossRefGoogle Scholar
  35. Crouch, R., Priest, D. G., and Duke, E. J., 1978, Superoxide dismutase activities of bovine ocular tissues, Exp. Eye Res. 27: 503–509.PubMedCrossRefGoogle Scholar
  36. Cullum, M. E., and Zile, M. H., 1986, Quantitation of biological retinoids by high-pressure liquid chromatography: Primary internal standardization using tritiated retinoids, Anal. Biochem. 153: 23–32.PubMedCrossRefGoogle Scholar
  37. Darnell, J., Lodish, H., and Baltimore, D., 1986, Molecular Cell Biology, Scientific American Books, W. H. Freeman, New York.Google Scholar
  38. DeLuca, L. M., 1977, Vitamin A and glycosylation. The direct involvement of vitamin A in glycosyl transfer reactions of mammalian membranes, Vitam. Horm. 35: 1–57.CrossRefGoogle Scholar
  39. DeLuca, L. M., and Shapiro, S. S. (eds.), 1981, Modulation of Cellular Interactions by Vitamin A and Derivatives (Retinoids), Ann. N.Y. Acad. Sci, 359: 1–430.Google Scholar
  40. DeLuca, H. F., Zile, M., and Sietsma, W. K., 1981, The metabolism of retinoic acid to 5,6-epoxyretinoic acid, retinoyl-3-glucuronide, and other polar metabolites, Ann. N.Y. Acad. Sci. 369: 25–36.CrossRefGoogle Scholar
  41. Dilley, R. A., and McConnell, D. G., 1970, Alpha-tocopherol in retinal rod outer segments of bovine eyes, J. Membr. Biol. 2: 317–323.CrossRefGoogle Scholar
  42. Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., Bolanowski, M. A., Bennett, C. D., Rands, E., Diehl, R. E., Mumford, R. A., Slater, E. E., Sigal, I. S., Caron, M. G., Lefkowitz, R. J., and Strader, C. D., 1986, Cloning of the gene and cDNA for mammalian ß-adrenergic receptor and homology with rhodopsin, Nature 321: 75–79.PubMedCrossRefGoogle Scholar
  43. Dohlman, H. G., Caron, M. G., and Lefkowitz, R. J., 1987, A family of receptors coupled to guanine nucleotide regulatory proteins, Biochemistry 26: 2657–2664.PubMedCrossRefGoogle Scholar
  44. Douglas, C. E., Chan, A. C., and Choy, P. C., 1986, Vitamin E inhibits platelet phospholipase A2, Biochim. Biophys. Acta 876: 639–645.PubMedCrossRefGoogle Scholar
  45. Dowling, J., and Wald, G., 1960, The biological function of vitamin A acid, Proc. Natl. Acad. Sci. USA 46: 587–608.PubMedCrossRefGoogle Scholar
  46. Dublet, B., and van der Rest, M., 1987, Type XII collagen is expressed in embryonic chick tendons, J. Biol. Chem. 262: 17724–17727.PubMedGoogle Scholar
  47. Elbein, A. D., 1987, Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains, Annu. Rev. Biochem. 56: 497–534.PubMedCrossRefGoogle Scholar
  48. Engvall, E., Hessle, H., and Klier, G., 1986, Molecular assembly, secretion, and matrix deposition of type VI collagen, J. Cell Biol. 102: 703–710.PubMedCrossRefGoogle Scholar
  49. Enna, S. J., and Karbon, E. W., 1987, Receptor regulation: Evidence for a relationship between phospholipid metabolism and neurotransmitter receptor-mediated cAMP formation in brain, Trends Pharmacol. Sci. 8: 21–24.CrossRefGoogle Scholar
  50. Evans, W. H., 1988, Gap junctions: Towards a molecular structure, BioEssays 8: 3–6.PubMedCrossRefGoogle Scholar
  51. Evered, D., and Whelan, J., (eds.), 1986, Functions of the Proteoglycans, Ciba Foundation Symposium 124, John Wiley and Sons, Chichester.Google Scholar
  52. Feeney, L., and Berman, E. R., 1976, Oxygen toxicity: Membrane damage by free radicals, Invest. Ophthalmol. 15: 789–792.PubMedGoogle Scholar
  53. Feeney-Burns, L., Berman, E. R., and Rothman, H., 1980, Lipofuscin of human retinal pigment epithelium, Am. J. Ophthalmol. 90: 783–791.PubMedGoogle Scholar
  54. Ferguson, M. A. J., and Williams, A. F., 1988, Cell-surface anchoring of proteins via glycosylphosphatidylinositol structures, Annu. Rev. Biochem. 57: 285–320.PubMedCrossRefGoogle Scholar
  55. Flynn, T. G., de Bold, M. L., and de Bold, A. J., 1983, The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties, Biochem. Biophys. Res. Commun. 117: 859–865.PubMedCrossRefGoogle Scholar
  56. Flynn, T. G., Davies, P. L., Kennedy, B. P., de Bold, M. L., and de Bold, A. J., 1985, Alignment of rat cardionatrin sequences with the preprocardionatrin sequence from complementary DNA, Science 227: 323325.Google Scholar
  57. Fransson, L.-A., 1987, Structure and function of cell-associated proteoglycans, Trends Biochem. Sci. 12: 406–411.CrossRefGoogle Scholar
  58. Freeman, B. A., 1984, Biological sites and mechanisms of free radical production, in: Free Radicals in Molecular Biology, Aging and Disease ( D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, eds.), Raven Press, New York, pp. 43–52.Google Scholar
  59. Fridovich, I., 1972, Quantitative aspects of the production of superoxide anion radical by xanthine oxidase, J. Biol. Chem. 247: 4053–4057.Google Scholar
  60. Fridovich, I., 1975, Superoxide dismutases, Annu. Rev. Biochem. 44: 147–159.PubMedCrossRefGoogle Scholar
  61. Fridovich, I., 1983, Superoxide radical: An endogenous toxicant, Annu. Rev. Pharmacol. Toxicol. 23: 239–257.PubMedCrossRefGoogle Scholar
  62. Fridovich, I., 1986, Biological effects of the superoxide radical, Arch. Biochem. Biophys. 247: 1–11.PubMedCrossRefGoogle Scholar
  63. Fridovich, I., 1989, Superoxide dismutases. An adaptation to a paramagnetic gas, J. Biol. Chem. 264: 7761–7764.PubMedGoogle Scholar
  64. Fridovich, I., and Freeman, B., 1986, Antioxidant defenses in the lung, Annu. Rev. Physiol. 48: 693–702.PubMedCrossRefGoogle Scholar
  65. Fuchs, E., and Green, H., 1981, Regulation of terminal differentiation of cultured human keratinocytes by vitamin A, Cell 25: 617–625.PubMedCrossRefGoogle Scholar
  66. Futai, M., Noumi, T., and Maeda, M., 1989, ATP synthase (H+-ATPase): Results by combined biochemical and molecular biological approaches, Annu. Rev. Biochem. 58: 111–136.PubMedCrossRefGoogle Scholar
  67. Gardner, D. G., Vlasuk, G. P., Baxter, J. D., Fiddes, J. C., and Lewicki, J. A., 1987, Identification of atrial natriuretic factor gene transcripts in the central nervous system of the rat, Proc. Natl. Acad. Sci. USA 84: 2175–2179.PubMedCrossRefGoogle Scholar
  68. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.PubMedCrossRefGoogle Scholar
  69. Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem. 56: 615–649.PubMedCrossRefGoogle Scholar
  70. Gjoen, T., Bjerkelund, T., Blomhoff, H. K., Norum, K. R., Berg, I., and Blomhoff, R., 1987, Liver takes up retinol-binding protein from plasma, J. Biol. Chem. 262: 10926–10930.PubMedGoogle Scholar
  71. Goodman, D. S., 1984, Plasma retinol-binding protein, in: The Retinoids, Vol. 2 ( M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds.), Academic Press, Orlando, FL, pp. 41–88.Google Scholar
  72. Granger, D. N., Hollwarth, M. E., and Parks, D. A., 1986, Ischemia-reperfusion injury: Role of oxygen-derived free radicals, Acta Physiol. Scand. [Suppl. J 548: 47–63.Google Scholar
  73. Graziano, M. P., and Gilman, A. G., 1987, Guanine nucleotide-binding regulatory proteins: Mediators of transmembrane signaling, Trends Pharmacol. Sci. 8: 478–481.CrossRefGoogle Scholar
  74. Greenwald, R. A. (ed.), 1985, CRC Handbook of Methods for Oxygen R adical Research, CRC Press, Boca Raton, FL.Google Scholar
  75. Hall, M. O., and Hall, D. O., 1975, Superoxide dismutase of bovine and frog rod outer segments, Biochem. Biophys. Res. Commmun. 67: 1199–1204.PubMedCrossRefGoogle Scholar
  76. Hall, P. F., 1985, Role of cytochromes P-450 in the biosynthesis of steroid hormones, Vitam. Horm. 42: 315–368.PubMedCrossRefGoogle Scholar
  77. Halliwell, B., and Grootveld, M., 1987, The measurement of free radical reactions in humans, FEBS Leu. 213: 9–14.CrossRefGoogle Scholar
  78. Halliwell, B., and Gutteridge, J. M. C., 1984a, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219: 1–14.PubMedGoogle Scholar
  79. Halliwell, B., and Gutteridge, J. M. C., 1984b, Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy, Lancet 1: 1396–1397.PubMedCrossRefGoogle Scholar
  80. Handelman, G. J., and Dratz, E. A., 1986, The role of antioxidants in the retina and retinal pigment epithelium and the nature of prooxidant-induced damage, Adv. Free Radicals Biol. Med. 2: 1–89.CrossRefGoogle Scholar
  81. Harden, T. K., Stephens, L., Hawkins, P. T., and Downes, C.P., 1987, Turkey erythrocyte membranes as a model for regulation of phospholipase C by guanine nucleotides, J. Biol. Chem. 262: 9057–9061.PubMedGoogle Scholar
  82. Harper, E., 1980, Collagenases, Annu. Rev. Biochem. 49: 1063–1078.PubMedCrossRefGoogle Scholar
  83. Harrison, E. H., Smith, J. E., and Goodman, D. S., 1979, Unusual properties of retinyl palmitate hydrolase activity in rat liver, J. Lipid Res. 20: 760–771.Google Scholar
  84. Hascall, V. C., and Kimura, J. H., 1982, Proteoglycans: Isolation and characterization, in: Methods in Enzymology, Vol. 82 ( L. W. Cunningham and D. W. Frederiksen, eds.), Academic Press, New York, pp. 769–800.Google Scholar
  85. Hassell, J., Silverman-Jones, C., and DeLuca, L., 1978, The in vivo stimulation of mannose incorporation into mannosylretinyl phosphate, dolichylmannosyl phosphate and specific glycopeptides of rat liver by high doses of retinyl palmitate, J. Biol. Chem. 253: 1627–1631.PubMedGoogle Scholar
  86. Hassell, J. R., Newsome, D. A., and DeLuca, L. M., 1980, Increased biosynthesis of specific glycoconjugates in rat corneal epithelium following treatment with vitamin A, Invest. Ophthalmol. Vis. Sci. 16: 642–647.Google Scholar
  87. Hassell, J. R., Kimura, J. H., and Hascall, V. C., 1986, Proteoglycan core protein families, Annu. Rev. Biochem. 55: 539–567.PubMedCrossRefGoogle Scholar
  88. Higgs, G. A., Salmon, J. A., Henderson, B., and Vane, J.R., 1987, Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity, Proc. Natl. Acad. Sci USA 84: 1417–1420.PubMedCrossRefGoogle Scholar
  89. Hirasawa, K., and Nishizuka, Y., 1985, Phosphatidylinositol turnover in receptor mechanism and signal transduction, Annu. Rev. Pharmacol. Toxicol. 25: 147–170.PubMedCrossRefGoogle Scholar
  90. Hirschberg, C. B., and Snider, M.D., 1987, Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus, Annu. Rev. Biochem. 56: 63–87.PubMedCrossRefGoogle Scholar
  91. Hokin, L. E., 1985, Receptors and phosphoinositide-generated second messengers, Annu. Rev. Biochem. 54: 205–235.PubMedCrossRefGoogle Scholar
  92. Houslay, M. D., 1987, Egg activation unscrambles a potential role for IP4, Trends Biochem. Sci. 12: 1–2.CrossRefGoogle Scholar
  93. Huganir, R. L., and Greengard, P., 1987, Regulation of receptor function by protein phosphorylation, Trends Pharmacol. Sci. 8: 472–477.CrossRefGoogle Scholar
  94. Hughes, H., Smith, C. V., Tsokos-Kuhn, J. O., and Mitchell, J. R., 1986, Quantitation of lipid peroxidation products by gas chromatography-mass spectrometry, Anal. Biochem. 152: 107–112.PubMedCrossRefGoogle Scholar
  95. Hyslop, P. A., Hinshaw, D. B., Hasley, W. A. Jr., Schraufstatter, I. U., Sauerheber, R. D., Spragg, R. G., Jackson, J. H., and Cochrane, C. G., 1988, Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide, J. Biol. Chem. 263: 1665–1675.PubMedGoogle Scholar
  96. Irvine, R. F., Letcher, A. J., Heslop, J. P., and Berridge, M. J., 1986, The inositol tris/tetrakisphosphate pathway demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues, Nature 320: 631–634.PubMedCrossRefGoogle Scholar
  97. Jaken, S., and Kiley, S. C., 1987, Purification and characterization of three types of protein kinase C from rabbit brain cytosol, Proc. Natl. Acad. Sci. USA 84: 4418–4422.PubMedCrossRefGoogle Scholar
  98. Jander, R., Troyer, D., and Rauterberg, J., 1984, A collagen-like glycoprotein of the extracellular matrix is the undegraded form of type VI collagen, Biochemistry 23: 3675–3681.PubMedCrossRefGoogle Scholar
  99. Kapoor, R., Bornstein, P., and Sage, E. H., 1986, Type VIII collagen from bovine Descemet’s membrane: Structural characterization of a triple-helical domain, Biochemistry 25: 3930–3937.PubMedCrossRefGoogle Scholar
  100. Kato, M., Kato, K., and Goodman, D. S., 1984, Immunocytochemical studies on the localization of plasma and of cellular retinol-binding proteins and of transthyretin (prealbumin) in rat liver and kidney, J. Cell. Biol. 98: 1696–1704.PubMedCrossRefGoogle Scholar
  101. Kato, M., Blaner, W. S., Mertz, J. R., Das, K., Kato, K., and Goodman, D.S., 1985, Influence of retinoid nutritional status on cellular retinol-and cellular retinoic acid-binding protein concentrations in various rat tissues, J. Biol. Chem. 260: 4832–4838.PubMedGoogle Scholar
  102. Kerlavage, A. R., Fraser, C. M., and Venter, J. C., 1987, Muscarinic cholinergic receptor structure: Molecular biological support for subtypes, Trends Pharmacol. Sci. 8: 426–431.CrossRefGoogle Scholar
  103. Kikkawa, U., Kishimoto, A., and Nishizuka, Y., 1989, The protein kinase C family: Heterogeneity and its implications, Annu. Rev. Biochem. 58: 31–44.PubMedCrossRefGoogle Scholar
  104. Kim, H.-Y., and Wolf, G., 1987, Vitamin A deficiency alters genomic expression for fibronectin in liver and hepatocytes, J. Biol. Chem. 262: 365–371.PubMedGoogle Scholar
  105. Kobilka, B. K., Dixon, R. A. F., Frielle, T., Dohlman, H. G., Bolanowski, M. A., Sigal, I. S., Yang-Feng, T. L., Francke, U., Caron, M. G., and Lefkowitz, R. J., 1987, cDNA for the human 32-adrenergic receptor: A protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 84: 46–50.Google Scholar
  106. Kohno, T., Sorgente, N., Ishibashi, T., Goodnight, R., and Ryan, S. J., 1987, Immunofluorescent studies of fibronectin and laminin in the human eye, Invest. Ophthalmol. Vis. Sci. 28: 506–514.PubMedGoogle Scholar
  107. Kopan, R., Traska, G., and Fuchs, E., 1987, Retinoids as important regulators of terminal differentiation: Examining keratin expression in individual epidermal cells at various stages of keratinization, J. Cell Biol. 105: 427–440.PubMedCrossRefGoogle Scholar
  108. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54: 631–664.PubMedCrossRefGoogle Scholar
  109. Kwatra, M. M., Leung, E., Maan, A. C., McMahon, K. K., Ptasienski, J., Green, R.D., and Hosey, M.M., 1987, Correlation of agonist-induced phosphorylation of chick heart muscarinic receptors with receptor desensitization, J. Biol. Chem. 262: 16314–16321.PubMedGoogle Scholar
  110. Lands, W. E. M., 1985, Interactions of lipid hydroperoxides with eicosanoid biosynthesis, J. Free Radicals Biol. Med. 1: 97–101.CrossRefGoogle Scholar
  111. Leeb-Lundberg, L. M. F., Cotecchia, S., Lomasney, J. W., DeBernardis, J. F. Lefkowitz, R. J., and Caron, M. G., 1985, Phorbol esters promote a,-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism, Proc. Natl. Acad. Sci. USA 82: 5651–5655.Google Scholar
  112. Leeb-Lundberg, L. M. F., Cotecchia, S., DeBlasi, A., Caron, M. G., and Lefkowitz, R. J., 1987, Regulation of adreneregic receptor function by phosphorylation. I. Agonist-promoted desensitization and phosphorylation of al-adrenergic receptors coupled to inositol phospholipid metabolism in DDT, MF-2 smooth muscle cells, J. Biol. Chem. 262: 3098–3105.PubMedGoogle Scholar
  113. Lefkowitz, R. J., Stadel, J. M., and Caron, M. G., 1983, Adenylate cyclase-coupled beta-adrenergic receptors: Structure and mechanisms of activation and desensitization, Annu. Rev. Biochem. 52: 159–186.PubMedCrossRefGoogle Scholar
  114. Lehninger, A. L., 1982, Principles of Biochemistry, Worth, New York.Google Scholar
  115. Levitzki, A., 1987, Regulation of hormone-sensitive adenylate cyclase, Trends Pharmacol. Sci. 8: 299–303.CrossRefGoogle Scholar
  116. Liau, G., Ong, D. E., and Chytil, F., 1981, Interaction of the retinol/cellular retinol-binding protein complex with isolated nuclei and nuclear components, J. Cell Biol. 91: 63–68.PubMedCrossRefGoogle Scholar
  117. Liau, G., Ong., D. E., and Chytil, F., 1985, Partial characterization of nuclear binding sites for retinol delivered by cellular retinol binding protein, Arch. Biochem. Biophys. 237: 354–360.Google Scholar
  118. Lindberg, K. A., Jr., and Pinnell, S. R., 1982, Collagen and its disorders, in: Pathobiology of Ocular Disease, Part B ( A. Gamer and G. K. Klintworth, eds.), Marcel Dekker, New York, pp. 1009–1031.Google Scholar
  119. Low, M. G., and Saltiel, A. R., 1988, Structural and functional roles of glycosyl-phosphatidylinositol in membranes, Science 239: 268–275.PubMedCrossRefGoogle Scholar
  120. Lunstrum, G. P., Sakai, L. Y., Keene, D. R., Morris, N. P., and Burgeson, R. E., 1986, Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils, J. Biol. Chem. 261: 9042–9048.PubMedGoogle Scholar
  121. Lunstrum, G. P., Kuo, H.-J., Rosenbaum, L. M., Keene, D. R., Glanville, R. W., Sakai, L. Y., and Burgeson, R. E., 1987, Anchoring fibrils contain the carboxyl-terminal globular domain of type VII procollagen, but lack the amino-terminal globular domain, J. Biol. Chem. 262: 13706–13712.PubMedGoogle Scholar
  122. MacDonald, P. N., and Ong, D. E., 1987, Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II, J. Biol. Chem. 262: 10550–10556.PubMedGoogle Scholar
  123. Majerus, P. W., Connolly, T. M., Bansal, V. S., Inhom, R. C., Ross, T. S., and Lips, D. L., 1988, Inositol phosphates: Synthesis and degradation, J. Biol. Chem. 263: 3051–3054.PubMedGoogle Scholar
  124. Martin, G. R., Timpl, R., Muller, P. K., and Kuhn, K., 1985, The genetically distinct collagens, Trends Biochem. Sci. 10: 285–287.CrossRefGoogle Scholar
  125. Mayne, R., and Burgeson, R. E., 1987, Structure and Function of Collagen Types, Academic Press, Orlando, FL.Google Scholar
  126. McCay, P. B., 1985, Vitamin E: Interactions with free radicals and ascorbate, Annu. Rev. Nutr. 5: 323–340.PubMedCrossRefGoogle Scholar
  127. McCord, J. M., 1986, Superoxide radical: A likely link between reperfusion injury and inflammation, Adv. Free Radical Biol. Med. 2: 325–345.CrossRefGoogle Scholar
  128. McCord, J. M. and Fridovich, I., 1969, Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein), J. Biol. Chem. 244: 6049–6055.PubMedGoogle Scholar
  129. McCormick, D., van der Rest, M., Goodship, J., Lozano, G., Ninomiya, Y., and Olsen, B. R., 1987, Structure of the glycosaminoglycan domain in the type IX collagen-proteoglycan, Proc. Natl. Acad. Sci. USA 84: 4044 4048.Google Scholar
  130. Mead, J. F., 1984, Free radical mechanisms in lipid peroxidation and prostaglandins, in: Free Radicals in Molecular Biology, Aging and Disease ( D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, eds.), Raven Press, New York, pp. 53–66.Google Scholar
  131. Minotti, G., and Aust, S. D., 1987, The requirement for iron(III) in the initiation of lipid peroxidation by iron(II) and hydrogen peroxide, J. Biol. Chem. 262: 1098–1104.PubMedGoogle Scholar
  132. Mochly-Rosen, D., and Koshland, D. E., Jr., 1987, Domain structure and phosphorylation of protein kinase C, J. Biol. Chem. 262: 2291–2297.PubMedGoogle Scholar
  133. Morris, N. P., and Bachinger, H. P., 1987, Type XI collagen is a heterotrimer with the composition (1a,2a,3a) retaining non-triple-helical domains, J. Biol. Chem. 262: 11345–11350.PubMedGoogle Scholar
  134. Napier, M. A., Vandlen, R. L., Albers-Schonberg, G., Nutt, R. F., Brady, S., Lyle, T., Winquist, R., Faison, E. P., Heinel, L. A., and Blaine, E. H., 1984, Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues, Proc. Natl. Acad. Sci. USA 81: 5946–5950.PubMedCrossRefGoogle Scholar
  135. Napoli, J. L., McCormick, A. M., O’Meara, B., and Dratz, E. A, 1984, Vitamin A metabolism: a-Tocopherol modulates tissue retinol levels in vivo, and retinyl palmitate hydrolysis in vitro, Arch. Biochem. Biophys. 230: 194–202.PubMedCrossRefGoogle Scholar
  136. Nebert, D. W., Eisen, H. J., Negishi, M., Land, M. A., and Hjelmeland, L. M., 1981, Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities, Annu. Rev. Pharmacol. Toxicol. 21: 431–462.PubMedCrossRefGoogle Scholar
  137. Needleman, P., 71rrk, J., Jakschik, B. A., Morrison, A. R., and Lefkowith, J.B., 1986, Arachidonic acid metabolism, Annu. Rev. Biochem. 55: 69–102.Google Scholar
  138. Nelson, C. A., and Seamon, K. B., 1986, Binding of [3H]forskolin to human platelet membranes, J. Biol. Chem. 261: 13469–13473.PubMedGoogle Scholar
  139. Neufeld, E. F., and McKusick, V. A., 1983, Disorders of lysosomal enzyme synthesis and localization: 1-cell disease and pseudo-Hurler polydystrophy, in: The Metabolic Basis of Inherited Disease, 5th ed. ( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), McGraw-Hill, New York, pp. 778–787.Google Scholar
  140. Nirenberg, M. W., and Matthaei, J. H., 1961, The dependence of cell-free protein synthesis in E.Coli upon naturally occurring or synthetic polyribonucleotides, Proc. Natl. Acad. Sci. USA 47: 1588–1602.PubMedCrossRefGoogle Scholar
  141. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233: 305–312.PubMedCrossRefGoogle Scholar
  142. Oliw, E. H., Guengerich, F. P., and Oates, J.A., 1982, Oxygenation of arachidonic acid by hepatic monooxygenases. Isolation and metabolism of four epoxide intermediates, J. Biol. Chem. 257: 3771–3781.PubMedGoogle Scholar
  143. Olson, J. A., and Gunning, D., 1983, The storage form of vitamin A in rat liver cells, J. Nutr. 113: 2184–2191.PubMedGoogle Scholar
  144. Olson, J. A., Bridges, C. D. B., Packer, L., Chytil, F., and Wolf, G., 1983, The function of vitamin A, Fed. Proc. 42: 2740–2746.PubMedGoogle Scholar
  145. Omori, M., and Chytil, F., 1982, Mechanism of vitamin A action. Gene expression in retinol-deficient rats, J. Biol. Chem. 257: 14370–14374.PubMedGoogle Scholar
  146. Ong, D. E., Kakkad, B., and MacDonald, P. N., 1987, Acyl-CoA- independent esterification of retinol bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine, J. Biol. Chem. 262: 2729–2736.PubMedGoogle Scholar
  147. Packer, L. (ed.), 1984, Oxygen Radicals in Biological Systems, Methods in Enzymology, Vol. 105, Academic Press, Orlando, FL.Google Scholar
  148. Paris, S., and Pouyssegur, J., 1987, Further evidence for a phospholipase C-coupled G protein in hamster fibroblasts, J. Biol. Chem. 262: 1970–1976.PubMedGoogle Scholar
  149. Parsons, W. J., and Stiles, G. L., 1987, Heterologous desensitization of the inhibitory Al adenosine receptoradenylate cyclase system in rat adipocytes, J. Biol. Chem. 262: 841–847.PubMedGoogle Scholar
  150. Parthasarathy, R., and Eisenberg, F., Jr., 1986, The inositol phospholipids: A stereochemical view of biological activity, Biochem. J. 235: 313–322.PubMedGoogle Scholar
  151. Paul, A. K., Marala, R. B., Jaiswal, R. K., and Sharma, R. K., 1987, Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein, Science 235: 1224–1226.PubMedCrossRefGoogle Scholar
  152. Pedersen, P. L., and Carafoli, E., 1987, Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12: 146–150.CrossRefGoogle Scholar
  153. Peralta, E. G., Winslow, J. W., Peterson, G. L., Smith, D. H., Ashkenazi, A., Ramachandran, J., Schimerlik, M. I., and Capon, D. J., 1987, Primary structure and biochemical properties of an M2 muscarinic receptor, Science 236: 600–605.PubMedCrossRefGoogle Scholar
  154. Pfeuffer, E., Dreher, R.-M., Metzger, H:, and Pfeuffer, T., 1985, Catalytic unit of adenylate cyclase: Purification and identification by affinity crosslinking, Proc. Natl. Acad. Sci. USA 82: 3086–3090.Google Scholar
  155. Pinnell, S. R., and Murad, S., 1983, Disorders of collagen, in: The Metabolic Basis of Inherited Disease, 5th ed. ( J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), McGraw-Hill, New York, pp. 1425–1449.Google Scholar
  156. Poole, A. R., 1986, Proteoglycans in health and disease: Structures and functions, Biochem. J. 236: 1–14.PubMedGoogle Scholar
  157. Pryor, W. A., 1987, Detection of lipid hydroperoxides, Free Radical Biol. Med. 3: 317.CrossRefGoogle Scholar
  158. Prystowsky, J. H., Smith, J. E., and Goodman, D. S., 1981, Retinyl palmitate hydrolase activity in normal rat liver, J. Biol. Chem. 256: 4498–4503.PubMedGoogle Scholar
  159. Rao, N. A., Thaete, L. G., Delmage, J. M., and Sevanian, A., 1985, Superoxide dismutase in ocular structures, Invest. Ophthalmol. Vis. Sci. 26: 1778–1781.PubMedGoogle Scholar
  160. Rasmussen, H., 1986a, The calcium messenger system (first of two parts), N. Engl. J. Med. 314: 1094–1101.PubMedCrossRefGoogle Scholar
  161. Rasmussen, H., 19866, The calcium messenger system (second of two parts), N. Engl. J. Med. 314: 1164–1170.Google Scholar
  162. Revel, J. P., Yancey, S. B., Nicholson, B., and Hoh, J., 1987, Sequence diversity of gap junction proteins, in: Junctional Complexes of Epithelial Cells, Ciba Foundation Symposium 125, John Wiley & Sons, Chichester, pp. 108–127.Google Scholar
  163. Rodbell, M., 1980, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17–21.PubMedCrossRefGoogle Scholar
  164. Roden, L., 1980, Structure and metabolism of connective tissue proteoglycans, in: The Biochemistry of Glycoproteins and Proteoglycans (W. J. Lennarz, ed.), Plenum Press, New York, pp. 267–371.Google Scholar
  165. Romano, M. C., Eckardt, R. D., Bender, P. E., Leonard, T. B., Straub, K. M., and Newton, J. F., 1987, Biochemical characterization of hepatic microsomal leukotriene B4 hydroxylases, J. Biol. Chem. 262: 1590–1595.PubMedGoogle Scholar
  166. Rossier, B. C., Geering, K., and Kraehenbuhl, J. P., 1987, Regulation of the sodium pump: How and why? Trends Biochem. Sci. 12: 483–487.CrossRefGoogle Scholar
  167. Rouzer, C. A., and Samuelsson, B., 1987, Reversible, calcium-dependent membrane association of human leukocyte 5-lipoxygenase, Proc. Natl. Acad. Sci USA 84: 7393–7397.PubMedCrossRefGoogle Scholar
  168. Ruoslahti, E., 1988a, Fibronectin and its receptors, Annu. Rev. Biochem. 57: 375–413.PubMedCrossRefGoogle Scholar
  169. Ruoslahti, E., 19886, Structure and biology of proteoglycans, Annu. Rev. Cell Biol. 4: 229–255.Google Scholar
  170. Ryu, S. H., Cho, K. S., Lee, K.-Y., Suh, P.-G., and Rhee, S. G., 1987a, Purification and characterization of two immunologically distinct phosphoinositide-specific phospholipase C from bovine brain, J. Biol. Chem. 262: 12511–12518.PubMedGoogle Scholar
  171. Ryu, S. H., Suh, P.-G., Cho, K. S., Lee, K.-Y., and Rhee, S. G., 1987b, Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase C, Proc. Natl. Acad. Sci. USA 84: 6649–6653.PubMedCrossRefGoogle Scholar
  172. Sakai, L. Y., Keene, D. R., Morris, N. P., and Burgeson, R. E., 1986, Type VII collagen is a major structural component of anchoring fibrils, J. Cell Biol. 103: 1577–1586.PubMedCrossRefGoogle Scholar
  173. Sani, B. P. and Banerjee, C. K., 1983, Cellular receptor mediation of the action of retinoic acid, in: Modulation and Mediation of Cancer by Vitamins ( F. L. Meyskens and K. N. Prasad, eds.), S. Karger, Basel, pp. 153–161.Google Scholar
  174. Schenk, D. B., Phelps, M. N., Porter, J. G., Fuller, F., Cordell, B., and Lewicki, J. A., 1987, Purification and subunit composition of atrial natriuretic peptide receptor, Proc. Natl. Acad. Sci. USA 84: 1521–1525.PubMedCrossRefGoogle Scholar
  175. Schuetz, E. G., Wrighton, S. A., Barwick, J. L., and Guzelian, P. S., 1984, Induction of cytochrome P-450 by glucocorticoids in rat liver. I. Evidence that glucocorticoids and pregnenolone 16a-carbonitrile regulate de novo synthesis of a common form of cytochrome P-450 in cultures of adult rat hepatocytes and in the liver in vivo, J. Biol. Chem. 259: 1999–2006.PubMedGoogle Scholar
  176. Schwartz, D., Geller, D. M., Manning, P. T., Siegel, N. R., Fok, K. F., Smith, C. E., and Needleman, P., 1985, Ser-Leu-Arg-Arg-atriopeptin III: The major circulating form of atrial peptide, Science 229: 397–400.PubMedCrossRefGoogle Scholar
  177. Schwartzman, M. L., Masferrer, J., Dunn, M. W., McGiff, J. C., and Abraham, N. G., 1987a, Cytochrome P450, drug metabolizing enzymes and arachidonic acid metabolism in bovine ocular tissues, Curr. Eye Res. 6: 623–630.PubMedCrossRefGoogle Scholar
  178. Schwartzman, M. L., Balazy, M., Masferrer, J., Abraham, N. G., McGiff, J. C., and Murphy, R. C., 1987b, 12(R)- Hydroxyeicosatetraenoic acid: A cytochrome P450-dependent arachidonate metabolite that inhibits Na+,K+-ATPase in the cornea, Proc. Natl. Acad. Sci USA 84: 8125–8129.Google Scholar
  179. Scott, J. E., 1988, Proteoglycan—fibrillar collagen interactions, Biochem. J. 252: 313–323.PubMedGoogle Scholar
  180. Seamon, K. B., and Daly, J. W., 1981, Forskolin: A unique diterpene activator of cyclic AMP-generating systems, J. Cyclic Nucleotide Res. 7: 201–224.PubMedGoogle Scholar
  181. Seamon, K. B., and Daly, J. W., 1985, High-affinity binding of forskolin to rat brain membranes, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 19: 125–135.PubMedGoogle Scholar
  182. Seamon, K. B., and Wetzel, B., 1984, Interaction of forskolin with dually regulated adenylate cyclase, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17: 91–99.PubMedGoogle Scholar
  183. Sevanian, A., and Hochstein, P., 1985, Mechanisms and consequences of lipid peroxidation in biological systems, Annu. Rev. Nutr. 5: 365–390.PubMedCrossRefGoogle Scholar
  184. Sevanian, A., and Kim, E., 1985, Phospholipase A2 dependent release of fatty acids from peroxidized membranes, J. Free Radicals Biol. Med. 1: 263–271.CrossRefGoogle Scholar
  185. Sherman, D. R., Lloyd, R. S., and Chytil, F., 1987, Rat cellular retinol-binding protein: cDNA sequence and rapid retinol-dependent accumulation of mRNA, Proc. Natl. Acad. Sci. USA 84: 3209–3213.PubMedCrossRefGoogle Scholar
  186. Shi, Q.-H., Ruiz, J.A. and Ho, R.-J., 1986, Forms of adenylate cyclase, activation and/or potentiation by forskolin, Arch. Biochem. Biophys. 251: 156–165.PubMedCrossRefGoogle Scholar
  187. Shichi, H., 1984, Biotransformation and drug metabolism, in: Pharmacology of the Eye, Handbook of Pharmacology, Vol. 69 ( M. L. Sears, ed.), Springer-Verlag, Berlin, pp. 117–148.Google Scholar
  188. Shichi, H., Atlas, S. A., and Nebert, D. W., 1975, Genetically regulated aryl hydrocarbon hydroxylase induction in the eye: Functional significance of the drug-metabolizing system for the retinal pigmented epithelium—choroid, Exp. Eye Res. 21: 557–567.PubMedCrossRefGoogle Scholar
  189. Shimonaka, M., Saheki, T., Hagiwara, H., Ishido, M., Nogi, A., Fujita, T., Wakita, K.-i, Inada, Y., Kondo, J., and Hirose, S., 1987, Purification of atrial natriuretic peptide receptor from bovine lung. Evidence for a disulfide-linked subunit structure, J. Biol. Chem. 262: 5510–5514.PubMedGoogle Scholar
  190. Sibley, D. R., and Lefkowitz, R. J., 1985, Molecular mechanisms of receptor desensitization using the 3-adrenergic receptor-coupled adenylate cyclase system as a model, Nature 317: 124–129.PubMedCrossRefGoogle Scholar
  191. Sibley, D. R., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J., 1987, Regulation of transmembrane signaling by receptor phosphorylation, Cell 48: 913–922.PubMedCrossRefGoogle Scholar
  192. Simpson, P. J., Mickelson, J. K., and Lucchesi, B. R., 1987, Free radical scavengers in myocardial ischemia, Fed. Proc. 46: 2413–2421.PubMedGoogle Scholar
  193. Slater, T. F., 1984, Free-radical mechanisms in tissue injury, Biochem. J. 222: 1–15.PubMedGoogle Scholar
  194. Smigel, M. D., 1986, Purification of the catalyst of adenylate cyclase, J. Biol. Chem. 261: 1976–1982.PubMedGoogle Scholar
  195. Smigel, M. D., Ferguson, K. M., and Gilman, A. G., 1985, Control of adenylate cyclase activity by G proteins, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 19: 103–111.PubMedGoogle Scholar
  196. Smith, C. V., and Anderson, R. E., 1987, Methods for determination of lipid peroxidation in biological samples, Free Radical Biol. Med. 3: 341–344.CrossRefGoogle Scholar
  197. Soprano, D. R., Smith, J. E., and Goodman, D. S., 1982, Effect of retinol status on retinol-binding protein biosynthesis rate and translatable messenger RNA level in rat liver, J. Biol. Chem. 257: 7693–7697.PubMedGoogle Scholar
  198. Soprano, D. R., Soprano, K. J., and Goodman, D. S., 1986, Retinol-binding protein messenger RNA levels in the liver and in extrahepatic tissues of the rat, J. Lipid Res. 27: 166–171.PubMedGoogle Scholar
  199. Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 503–517.PubMedCrossRefGoogle Scholar
  200. Spiegel, A. M., 1987, Signal transduction by guanine nucleotide binding proteins, Mol. Cell. Endocrinol. 49: 116.CrossRefGoogle Scholar
  201. Sporn, M. B., Roberts, A. B., and Goodman, D. S. (eds.), 1984, The Retinoids, Vols. 1 and 2, Academic Press, Orlando, FL.Google Scholar
  202. Sramek, S. J., Wallow, I. H. L., Bindley, C., and Sterken, G., 1987, Fibronectin distribution in the rat eye, Invest. Ophthalmol. Vis. Sci. 28: 500–505.PubMedGoogle Scholar
  203. Steardo, L., and Nathanson, J. A., 1987, Brain barrier tissues: End organs for atriopeptins, Science 235: 470–473.PubMedCrossRefGoogle Scholar
  204. Steinert, P. M., and Roop, D.R., 1988, Molecular and cellular biology of intermediate filaments, Annu. Rev. Biochem. 57: 593–625.PubMedCrossRefGoogle Scholar
  205. Stiles, G. L., Caron, M. G., and Lefkowitz, R. J., 1984, ß-Adrenergic receptors: Biochemical mechanisms of physiological regulation, Physiol. Rev. 64: 661–743.PubMedGoogle Scholar
  206. Stryer, L., 1988, Biochemistry, 3rd ed., W. H. Freeman, New York.Google Scholar
  207. Stryer, L., and Bourne, H. R., 1986, G proteins: A family of signal transducers, Annu. Rev. Cell Biol. 2: 391–419.PubMedCrossRefGoogle Scholar
  208. Summers, T. A., Irwin, M. H., Mayne, R., and Balian, G., 1988, Monoclonal antibodies to type X collagen, J. Biol. Chem. 263: 581–587.PubMedGoogle Scholar
  209. Sundelin, J., Anundi, H., Tragardh, L., Eriksson, U., Lind, P., Ronne, H., Peterson, P. A., and Rask, L., 1985, The primary structure of rat liver cellular retinol-binding protein, J. Biol. Chem. 260: 6488–6493.PubMedGoogle Scholar
  210. Takai, Y., Kikkawa, U., Kaibuchi, K., and Nishizuka, Y., 1984, Membrane phospholipid metabolism and signal transduction for protein phosphorylation, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 18: 119–158.PubMedGoogle Scholar
  211. Takayanagi, R., Inagami, T., Snajdar, R. M., Imada, T., Tamura, M., and Misono, K. S., 1987, Two distinct forms of receptors for atrial natriuretic factor in bovine adrenocortical cells, J. Biol. Chem. 262: 12104–12113.PubMedGoogle Scholar
  212. Taylor, C. W., and Merritt, J. E., 1986, Receptor coupling to polyphosphoinositide turnover: A parallel with the adenylate cyclase system, Trends Pharmacol. Sci. 7: 238–242.CrossRefGoogle Scholar
  213. Taylor, S. S., 1987, Protein kinases: A diverse family of related proteins, BioEssays 7: 24–29.PubMedCrossRefGoogle Scholar
  214. Torrielli, M. V., and Dianzani, M. U., 1984, Free radicals in inflammatory disease, in: Free Radicals in Molecular Biology, Aging and Disease, ( D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, eds.), Raven Press, New York, pp. 355–379.Google Scholar
  215. Trueb, B., and Winterhalter, K. H., 1986, Type VI collagen is composed of a 200 kD subunit and two 140 kD subunits, EMBO J. 5: 2815–2819.PubMedGoogle Scholar
  216. Uchida, K., Shimonaka, M., Saheki, T., Ito, T., and Hirose, S., 1987, Identification of the primary translation product of atrial natriuretic peptide receptor mRNA in a cell-free system using anti-receptor antiserum, J. Biol. Chem. 262: 12401–12402.PubMedGoogle Scholar
  217. Ursini, F., Maiorino, M., and Gregolin, C., 1985, The selenoenzyme phospholipid hydroperoxide glutathione peroxidase, Biochem. Biophys. Acta 839: 62–70.PubMedCrossRefGoogle Scholar
  218. van der Rest, M., Mayne, R., Ninomiya, Y., Seidah, N. G., Chretien, M., and Olsen, B. R., 1985, The structure of type IX collagen, J. Biol. Chem. 260: 220–225.PubMedGoogle Scholar
  219. van Kuijk, F. J. G. M., and Dratz, E. A., 1987, Detection of phospholipid peroxides in biological samples, Free Radical Biol. Med. 3: 349–354.CrossRefGoogle Scholar
  220. van Kuijk, F. J. G. M., Handelman, G. J., and Dratz, E. A., 1985, Consecutive action of phospholipase A2 and glutathione peroxidase is required for reduction of phospholipid hydroperoxides and provides a convenient method to determine peroxide values in membranes, Free Radical Biol. Med. 1: 421–427.CrossRefGoogle Scholar
  221. van Kuijk, F. J. G. M., Sevanian, A., Handelman, G. J., and Dratz, E. A., 1987, A new role for phospholipase A2: Protection of membranes from lipid peroxidation damage, Trends Biochem. Sci. 12: 31–34.CrossRefGoogle Scholar
  222. Varma, S. D., and Lerman, S. (eds.), 1984, Proceedings of the First International Symposium on Light and Oxygen Effects on the Eye, Curr. Eye Res. 3:1–271.Google Scholar
  223. Vaughan, L., Winterhalter, K. H., and Bruckner, P., 1985, Proteoglycan Lt from chicken embryo sternum identified as type IX collagen, J. Biol. Chem. 260: 4758–4763.PubMedGoogle Scholar
  224. Wald, G., 1935, Carotenoids and the visual cycle, J. Gen. Physiol. 19: 351–371.PubMedCrossRefGoogle Scholar
  225. Waldman, S. A., Rapoport, R. M., and Murad, F., 1984, Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues, J. Biol. Chem. 259:14332–14334. Weiss, S. J., 1986, Oxygen, ischemia and inflammation, Acta Physiol. Scand. [Suppl.] 548: 9–37.Google Scholar
  226. Wiegand, R. D., Jose, J. G., Rapp, L. M., and Anderson, R. E., 1984, Free radicals and damage to ocular tissues, in: Free Radicals in Molecular Biology, Aging, and Disease ( D. Armstrong, R. S. Sohal, R. G. Cutler, and T. F. Slater, eds.), Raven Press, New York, pp. 317–353.Google Scholar
  227. Wiggert, B., Russell, P., Lewis, M., and Chader, G., 1977, Differential binding to soluble nuclear receptors and effects on cell viability of retinol and retinoic acid in cultured retinoblastoma cells, Biochem. Biophys. Res. Commun. 79: 218–225.PubMedCrossRefGoogle Scholar
  228. Winquist, R. J., Faison, E. P., Waldman, S. A., Schwartz, K., Murad, F., and Rapoport, R. M., 1984, Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle, Proc. Natl. Acad. Sci. USA 81: 7661–7664.PubMedCrossRefGoogle Scholar
  229. Wolf, G., Levin, L. V., and Bolmer, S. D., 1983, Multiple functions of vitamin A: Nuclear and extranuclear, in: Modulation and Mediation of Cancer by Vitamins ( F. L. Meyskens and K. N. Prasad, eds.), S. Karger, Basel, pp. 146–152.Google Scholar
  230. Woodgett, J. R., and Hunter, T., 1987, Isolation and characterization of two distinct forms of protein kinase C, J. Biol. Chem. 262: 4836–4843.PubMedGoogle Scholar
  231. Wright, J. K., Seckler, R., and Overath, P., 1986, Molecular aspects of sugar:ion cotransport, Annu. Rev. Biochem. 55: 225–248.PubMedCrossRefGoogle Scholar
  232. Zerlauth, G., Kim, S. Y., Winner, J. B., Kim, H.-Y., Bolmer, S. D., and Wolf, G., 1984, Vitamin A deficiency and serum or plasma fibronectin in the rat and in human subjects, J. Nutr. 114: 1169–1172.PubMedGoogle Scholar
  233. Zile, M. H., and Cullum, M. E., 1983, The function of vitamin A: Current concepts, Proc. Soc. Exp. Biol. Med. 172: 139–152.PubMedGoogle Scholar
  234. Zile, M. H., Inhorn, R. C., and DeLuca, H.F., 1982, Metabolism in vivo of all-trans-retinoic acid, J. Biol. Chem. 257: 3544–3550.PubMedGoogle Scholar
  235. Zile, M. H., Cullum, M. E., Simpson, R. U., Barua, A. B., and Swartz, D. A., 1987, Induction of differentiation of human promyelocytic leukemia cell line HL-60 by retinoyl glucuronide, a biologically active metabolite of vitamin A, Proc. Natl. Acad. Sci. USA 84: 2208–2212.PubMedCrossRefGoogle Scholar
  236. Zimmermann, D. R., Trueb, B., Winterhalter, K. H., Witmer, R., and Fischer, R. W., 1986, Type VI collagen is a major component of the human cornea, FEBS Lett. 197: 55–58.PubMedCrossRefGoogle Scholar
  237. Zweier, J. L., 1988, Measurement of superoxide-derived free radicals in the reperfused heart, J. Biol. Chem. 263: 1353–1357.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Elaine R. Berman
    • 1
  1. 1.Hadassah-Hebrew University Medical SchoolJerusalemIsrael

Personalised recommendations