Thioethers

  • Ryan J. Huxtable
Part of the Biochemistry of the Elements book series (BOTE, volume 6)

Abstract

The sulfur analogs of ethers are commonly called sulfides by chemists. Bioscientists, however, are in the habit of referring to thiols as sulfides. To avoid ambiguity, therefore, the term thioether will be used in this chapter.

Keywords

Penicillin Adduct Pyruvate Cyanide Thiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, E. P., 1974. Biosynthesis and Enzymatic Hydrolysis of Penicillins and Cephalosporins, University of Tokyo Press, Tokyo, 86 pp.Google Scholar
  2. Abraham, E. P., 1977. Biosynthesis of ß-lactam antibiotics, in Biologically Active Substances: Exploration and Exploitation (D. A. Hems, ed.), John Wiley, Chichester, pp. 1–16.Google Scholar
  3. Abraham, E. P., 1979. A glimpse of the early history of the cephalosporins, Rev. Infect. Dis. 1:99–105.PubMedCrossRefGoogle Scholar
  4. Albers-Schonberg, G., Arison, B. H., Hensens, O. D., Hirshfield, J., et al., 1978. Structure and absolute configuration of thienamycin, J. Am. Chem. Soc. 100:6491–6499.CrossRefGoogle Scholar
  5. Andersen, K. K., and Bernstein, D. T., 1980. Sulfur compounds in mustelids, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 399–406.CrossRefGoogle Scholar
  6. Brandsma, L., and Arens, J. G., 1967. The chemistry of thioethers; differences and analogies with ethers, in The Chemistry of the Ether Linkage (S. Patai, ed.), Interscience, London, pp. 553–615.CrossRefGoogle Scholar
  7. Carter, J. R., and Warner, E. D., 1958. Correction of defects in clotting accelerator activity by administration of methionine and vitamin K and of a new sulfhydryl-substituted methyl napthoquinone, vitamin K-S(II), J. Clin. Invest. 37:70–86.PubMedCrossRefGoogle Scholar
  8. Chain, E. C., 1979. The early years of the penicillin discovery, Trends Pharmacol. Sci. 1:6–11.CrossRefGoogle Scholar
  9. Cooper, R. D. G., 1980. New ß-lactam antibiotics, in Topics in Antibiotic Chemistry, Vol. 3 (P. G. Sammes, ed.), Ellis Horwood, Chichester, pp. 39–200.Google Scholar
  10. Cooper, R. D. G., Hatfield, L. D., and Spry, D. O., 1973. Chemical interconversion of ß-lactam antibiotics, Acc. Chem. Res. 6:32–40.CrossRefGoogle Scholar
  11. Cundliffe, E., 1979. Thiostrepton and related antibiotics, in Antibiotics, Vol. 5, Part I (F. E. Hahn, ed.), Springer-Verlag, New York, pp. 329–343.Google Scholar
  12. Dakshinamurti, K., and Bhagavan, H. N. (eds)., 1985. Biotin, Ann. N.Y. Acad. Sci. 447:1–441.Google Scholar
  13. Demain, A. L., 1983. Biosynthesis of ß-lactam antibiotics, Handbook Exp. Pharmacol. 67(1):189–228.CrossRefGoogle Scholar
  14. Demain, A. L., and Solomon, N. A., 1983a. Antibiotics Containing the Beta-Lactam Structure, Part I, Springer-Verlag, Heidelberg, 358 pp.Google Scholar
  15. Demain, A. L., and Solomon, N. A., 1983b. Antibiotics Containing the Beta-Lactam Structure, Part II, Springer-Verlag, Heidelberg, 479 pp.Google Scholar
  16. Dugas, H., and Penney, C., 1981. Bioorganic Chemistry, A Chemical Approach to Enzyme Action, Springer-Verlag, New York, p. 508.Google Scholar
  17. Eakin, R. E., Snell, E. E., and Williams, R. J., 1941. The concentration and assay of avidin, the injury-producing protein in raw egg white, J. Biol. Chem. 140:535–543.Google Scholar
  18. Eisenberg, M. A., 1975. Biotin, in Metabolism of Sulfur Compounds, (D. M. Greenberg, ed.), Academic Press, New York, pp. 27–56.Google Scholar
  19. Elder, A. L., 1970. The History of Penicillin Production, Chemical Engineering Progress Symposium Series, Vol. 66, American Institute of Chemical Engineering, New York.Google Scholar
  20. Elks, J., 1977. Recent Advances in the Chemistry of ß-Lactam Antibiotics, The Chemical Society, London.Google Scholar
  21. Elo, H. A., 1980. Occurrence of avidin-like biotin-binding capacity in various vertebrate tissues and its induction by tissue injury, Comp. Biochem. Physiol. 67B:221–224.Google Scholar
  22. Fleming, A., 1929. On the antibacterial action of cultures of a pénicillium, with special reference to their use in the isolation of B. influenzae, Br. J. Exp. Pathol. 10:226–236.Google Scholar
  23. Gale, E. F., Cundliffe, E., Reynolds, P. E., Richmond, M. H., and Waring, M. J., 1981. Inhibitors of bacterial and fungal cell wall synthesis, in The Molecular Basis of Antibiotic-Action, John Wiley, London, pp. 79–137.Google Scholar
  24. Goto, M., Sakurai, A., Ohta, K., and Yamakami, H., 1967. Die Struktur des Urothions, Tetrahedron Lett. 1967:4507.CrossRefGoogle Scholar
  25. Gubler, C. J., Fujiwara, M., and Dreyfus, P. M., 1974. Thiamine, John Wiley and Sons, New York, 393 pp.Google Scholar
  26. Guchhait, R. B., Polakis, S. E., Hollis, D., Fenselau, C., and Lane, M. D., 1976. Acetyl coenzyme A carboxylase system of Escherichia coli. Site of carboxylation of biotin and enzymatic reactivity of l′-N-(ureido)-carboxybiotin derivatives, J. Biol. Chem. 249:6646–6656.Google Scholar
  27. Hare, R., 1970. The Birth of Penicillin, George Allan and Unwin, London, 236 pp.Google Scholar
  28. Harris, R. S., et al., 1968. Biotin, in The Vitamins, Vol. 2 (W. H. Sebrell and R. S. Harris, eds.), Academic Press, New York, pp. 261–359.Google Scholar
  29. Hilker, D. M., and Somogyi, J. C., 1982. Antithiamins of plant origin: Their chemical nature and mode of action, Ann. N.Y. Acad. Sci. 378:137–145.PubMedCrossRefGoogle Scholar
  30. Jansen, B. C. P., and Donath, W. F., 1926. Antineuritic vitamin, Chem. Weekbl. 23:201–203.Google Scholar
  31. Kenney, W. C., Edmondson, D. E., and Singer, T. P., 1975. Covalent adducts of cysteine and riboflavin, In Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 189–215.Google Scholar
  32. Kögel, F., and Tönnis, B. Z., 1936. Über das Bias-Problem. Darstellung von krystallisierten Biotin aus Eigelb, Hoppe-Seyler’s Z. Physiol. Chem. 242:43–73.CrossRefGoogle Scholar
  33. Korpela, J., 1984. Avidin, a high affinity biotin-binding protein as a tool and subject of biological research, Med. Biol. 62:5–26.PubMedGoogle Scholar
  34. Korpela, J. K., Elo, H. A., and Tuohimaa, P. J., 1981a. Avidin induction by estrogen and progesterone in the immature oviduct of chicken, Japanese quail, duck and gull, Gen. Comp. Endocrinol. 44:230–232.PubMedCrossRefGoogle Scholar
  35. Korpela, J. K., Kulomaa, K. S., Elo, H. A., and Tuohimaa, P. J., 1981b. Biotin-binding proteins in eggs of oviparous vertebrates, Experientia 37:1065–1066.PubMedCrossRefGoogle Scholar
  36. Leder, I. G., 1975. Thiamine, biosynthesis and function, in Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 57–85.Google Scholar
  37. McCormick, D. B., 1975. Biotin, Nutr. Rev. 33:97–102.PubMedCrossRefGoogle Scholar
  38. Moss, J., and Lane, M. D., 1971. The biotin-dependent enzymes, Adv. Enzymol. 35:321–442.PubMedGoogle Scholar
  39. Munoz, E., García-Fernandez, F., and Vazquez, D., 1972. Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis in a Membrane, Elsevier, Amsterdam, 804 pp.Google Scholar
  40. Patai, S. (ed.), 1967. The Chemistry of the Ether Linkage, Interscience, London, 784 pp.Google Scholar
  41. Patai, S. (ed)., 1980. The Chemistry of Ethers, Crown Ethers; Hydroxyl Groups and Their Sulphur Analogues, John Wiley and Sons, Chichester, Part I, pp. 1–608, Part II, pp. 609-995.Google Scholar
  42. Pestka, S., and Bodley, J. W., 1973. The thiostrepton group of antibiotics, in Antibiotics, Vol. 3 (J. W. Corcoran and F. E. Hahn, eds.), Springer-Verlag, New York, pp. 551–573.Google Scholar
  43. Rolinson, G. N., 1977. Biological properties of ß-lactam antibiotics, in Biologically Active Substances: Exploration and Exploitation (D. A. Hems, ed.), John Wiley, Chichester, pp. 17–32.Google Scholar
  44. Sable, H. Z., and Gubler, C. J., 1982. Thiamine: Twenty years of progress, Ann. N.Y. Acad. Sci. 378:1–470.CrossRefGoogle Scholar
  45. Salib, A. G., Frappies, F., Quillerm, G., and Marquet, A., 1979. On the mechanism of conversion of dethiobiotin to biotin in Escherichia coli. Isolation of an intermediate in the biosynthesis of biotin from dethiobiotin, Biochem. Biophys. Res. Commun. 88:312–319.PubMedCrossRefGoogle Scholar
  46. Sammes, P. G., 1980. Topics in Antibiotic Chemistry, Vol. 4: The Chemistry and Antimicrobial Activity of New Synthetic ß-Lactam Antibiotics, Ellis Horwood, Chichester, 278 pp.Google Scholar
  47. Schildknecht, H., Wilz, J., Enzmann, F., Grund, N., and Ziegler, M., 1976. Mustelan, the malodorous substance from the anal gland of the mink (Mustela vison) and the polecat (Mustela putorius), Angew Chem. 15:242–243.CrossRefGoogle Scholar
  48. Sheehan, J. C., 1982. The Enchanted Ring: The Untold Story of Penicllin, MIT Press, Cambridge, Massachusetts, 224 pp.Google Scholar
  49. Sweetman, L., Surh, L., Baker, H., Peterson, R. M., and Nyhan, W. L., 1981. Clinical and metabolic abnormalities in a boy with dietary deficiency of biotin, Pediatrics 68:553–558.PubMedGoogle Scholar
  50. Vimokesant, S., Kunjara, S., Rungruangsak, K., Nakornchai, S., and Panijpan, B., 1982. Beriberi caused by antithiamin factors in food and its prevention, Ann. N. Y. Acad. Sci. 378:123–136.PubMedCrossRefGoogle Scholar
  51. Volpe, J. J., and Vagelos, P. R., 1973. Saturated fatty acid biosynthesis and its regulation, Annu. Rev. Biochem. 42:21–60.PubMedCrossRefGoogle Scholar
  52. Wagner, A. F., and Folker, K., 1964. Biotin, biocytin, and N-carboxybiotin, in Vitamins and Coenzymes, Wiley, New York, pp. 138–159.Google Scholar
  53. Wakil, S. J., Titchener, E. B., and Gibson, D. M., 1958. Evidence for the participation of biotin in the enzymic synthesis of fatty acids, Biochim. Biophys. Acta 29:225–226.PubMedCrossRefGoogle Scholar
  54. Waring, M. J., 1979. Echinomycin, triostin, and related antibiotics, in Antibiotics, Vol. 5, Part 2 (F.E. Hahn, ed.), Springer-Verlag, New York, pp. 173–194.Google Scholar
  55. Waser, J., and Watson, W. H., 1963. Crystal structure of sinigrin, Nature 198:1297–1298.CrossRefGoogle Scholar
  56. Wieland, T., and Faulstich, H., 1978. Amatoxins, phallotoxins, phallolysin, and antamanide—biologically active components of poisonous Amanita mushrooms, Crit. Rev. Biochem. 5:185–260.CrossRefGoogle Scholar
  57. Wieland, T., and Wieland, O., 1959. Chemistry and toxicology of the toxins of Amanita phalloides, Pharmacol. Rev. 11:87–107.PubMedGoogle Scholar
  58. Wilson, D., 1976. In Search of Penicillin, Alfred A. Knopf, New York.Google Scholar
  59. Wood, H. G., and Barden, R. E., 1977. Biotin enzymes, Annu. Rev. Biochem. 46:385–413.PubMedCrossRefGoogle Scholar
  60. Wrobel, J. T., 1977. Nuphar alkaloids, in The Alkaloids, Vol. 16 (Manske, R.H.F., ed.), Academic Press, New York, pp. 181–214.CrossRefGoogle Scholar
  61. Wrobel, J. T., Bielawska, H., Iwanow, A., and Ruszkowska, J., 1980. Sulfur containing nuphar alkaloids, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 353–360.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ryan J. Huxtable
    • 1
  1. 1.University of Arizona Health Sciences CenterTucsonUSA

Personalised recommendations