Advertisement

Taurine and the Oxidative Metabolism of Cysteine

  • Ryan J. Huxtable
Part of the Biochemistry of the Elements book series (BOTE, volume 6)

Abstract

Plants and microorganisms synthesize Cys. In animals, Cys is derived from the diet, from breakdown of protein, or from Met via transsulfuration. Metabolic pathways available for it involve oxidation, or utilization at the same oxidation state for protein synthesis or the synthesis of other thiol components, such as GSH. Cys metabolism is outlined on Figure 4-1, with the sections listed in which various branches are discussed in detail (Kun, 1969; Jocelyn, 1972; Greenberg, 1975; Cooper, 1983). The major pathways of oxidation branch from CSA and lead to sulfate or taurine (Figure 4-1). These are the major excreted metabolites of sulfur in mammals. Other, quantitatively minor, routes of oxidation involve transamination of Cys itself, and oxidation to sulfate by a route not involving CSA. An indication of the significance of the various routes of sulfur excretion is given by the data of Table 4-1 on urinary excretion of sulfur metabolites in humans (Sörbo et al., 1980). Metabolites arising from 3-mercaptopyruvate by reduction or via the sulfane pool account for less than 0.5% of total sulfur excretion. N-Acetylcysteine presumably arises from mercapturic acid (Green and Elce, 1975).

Keywords

Bile Salt Sulfur Amino Acid Cysteic Acid Sulfane Sulfur Taurine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, H. C., Davison, A. N., and Kaczmarek, L. K., 1971. Subcellular distribution of taurine and cysteine-sulphinate decarboxylase in developing rat brain, Biochem. J. 122:759–763.PubMedGoogle Scholar
  2. Aguirre, G. D., 1978. Retinal degeneration associated with the feeding of dog food to cats, J. Am. Vet. Med. Assoc. 172:791–796.PubMedGoogle Scholar
  3. Airaksinen, E. M., 1979. Uptake of taurine, GABA, 5-HT, and dopamine by blood platelets in progressive myoclonus epilepsy, Epilepsia 20:503–510.PubMedGoogle Scholar
  4. Allen, J. A., and Garrett, M. R., 1971. Taurine in marine invertebrates, Adv. Marine Biol. 9:205–253.Google Scholar
  5. Alvarez, J. G., and Storey, B. T., 1982. Spontaneous lipid peroxidation in rabbit epididymal spermatozoa: Its effects on sperm motility, Biol. Reprod. 27:1102–1108.PubMedGoogle Scholar
  6. Alvarez, J. G., and Storey, B. T., 1983. Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility, Biol. Reprod. 29:548–555.PubMedGoogle Scholar
  7. Anderson, C. H., Ashley, V. M., and Jones, J. D., 1976. Utilization of L-methionine sulfoxide, L-methionine sulfone and cysteic acid by the weaning rat, J. Nutr. 106:1108–1114.PubMedGoogle Scholar
  8. Anderson, C. M., and Tillinghast, E. K., 1980. GABA and taurine derivatives on the adhesive spiral of the orb web of Argiope spiders, and their possible behavioural significance, Physiol. Entomology 5:101–106.Google Scholar
  9. Atlas, M., Bahl, J. J., Roeske, W., and Bressler, R., 1984. In vitro osmoregulation of taurine in fetal mouse hearts, J. Mol. Cell. Cardiol. 16:311–320.PubMedGoogle Scholar
  10. Austin, L., Recasens, M., Mathur, R. L., and Mandel, P., 1978. The distribution of taurine, cysteinyl sulphinilic acid decarboxylase and crysteinyl (sic) sulphinilic acid α-ketoglutarate transaminase in the rat olfactory bulb and olfactory nucleus, Neurosci. Lett. 9:59–63.PubMedGoogle Scholar
  11. Awapara, J., and Manz, N., 1957. Absorption of injected taurine 35S by rat organs, J. Biol. Chem. 225:877–882.PubMedGoogle Scholar
  12. Azari, J., and Huxtable, R. J., 1980. The mechanism of the adrenergic stimulation of taurine influx in the heart, Eur. J. Pharmacol. 61:217–223.PubMedGoogle Scholar
  13. Azari, J., Brumbaugh, P., and Huxtable, R., 1980. Prophylaxis by taurine in the hearts of cardiomyopathic hamsters, J. Mol. Cell. Cardiol. 12:1353–1366.PubMedGoogle Scholar
  14. Azuma, J., Sawamura, A., Awata, N., Hasegawa, H., Ogura, K., Harada, H., Ohta, H., Yamauchi, K., Kishimoto, S., Yamagami, T., Ueda, E., and Ishiyama, T., 1983. Double-blind randomized crossover trial of taurine in congestive heart failure, Curr. Ther. Res. 34:543–557.Google Scholar
  15. Baba, A., Yamagami, S., Mizuo, H., and Iwata, H., 1980. Microassay of cysteine sulfinic acid by an enzymatic cycling method, Anal. Biochem. 101:288–293.PubMedGoogle Scholar
  16. Baba, A., Tatsuno, T., Kumagae, Y., and Iwata, H., 1983. Inhibitory effect of taurine on the formation of cyclic AMP in guinea pig hippocampus, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuriyama, R. J., Huxtable, and H. Iwata, eds.), A. R. Liss, New York, pp. 161–168.Google Scholar
  17. Bacq, Z. M., 1965. Chemical Protection against Ionizing Radiation, Thomas, Springfield, Illinois, 334 pp.Google Scholar
  18. Barbeau, A., and Huxtable, R., 1978. Taurine and Neurological Disorders, Raven Press, New York, 468 pp.Google Scholar
  19. Bellhorn, R. W., Bellhorn, M. B., Swarm, R. L., and Impellizzeri, C. W., 1975. Hereditary tapetal abnormality in the beagle, Ophthalmic Res. 7:250–260.Google Scholar
  20. Benjamin, L. E., and Steele, R. D., 1985. Hepatic cysteine sulfinate decarboxylase activity and urinary taurine excretion in rats fed varying levels of dietary protein, Fed. Proc. 44:1764.Google Scholar
  21. Bergquist, P. R., and Hartman, W. D., 1969. Free amino acid patterns and the classification of the Demospongiae, Mar. Biol. 3:247.Google Scholar
  22. Blake, R. L., Grillo, R. V., and Russell, E. S., 1974. Increased taurine excretion in hereditary hyperprolinemia of the mouse, Life Sci. 14:1285–1290.PubMedGoogle Scholar
  23. Blass, J. P., 1960. The simple monosubstituted guanidines of mammalian brain, Biochem. J. 77:484–489.PubMedGoogle Scholar
  24. Bonhaus, D. W., and Huxtable, R. J., 1983. The transport, biosynthesis, and biochemical actions of taurine in a genetic epilepsy, Neurochem. Int. 5:413–419.PubMedGoogle Scholar
  25. Bonhaus, D. W., and Huxtable, R. J., 1984. Seizure-susceptibility and decreased taurine transport in the genetically epileptic rat, Neurochem. Int. 6:365–368.PubMedGoogle Scholar
  26. Bonhaus, D. W., Laird, H., Mimaki, T., Yamamura, H. I., and Huxtable, R. J., 1983. Possible bases for the anticonvulsant action of taurine, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuriyama, R. J. Huxtable, and H. Iwata, eds.), Alan R. Liss, New York, pp. 195–209.Google Scholar
  27. Bonhaus, D. W., Lippincott, S. E., and Huxtable, R. J., 1984. Subcellular distribution of neuroactive amino acids in brains of genetically epileptic rats, Epilepsia 25:564–568.PubMedGoogle Scholar
  28. Bonhaus, D. W., Pasantes-Morales, H., and Huxtable, R. J., 1985. Actions of guanidinoethane sulfonate on taurine concentration, retinal morphology and seizure threshold in the neonatal rat, Neurochem. Int. 7:263–270.PubMedGoogle Scholar
  29. Bonomi, F., Pagani, S., Cerletti, P., and Cannella, C., 1977. Rhodanese-medicated sulfur transfer to succinate dehydrogenase, Eur. J. Biochem. 72:17–24.PubMedGoogle Scholar
  30. Bousquet, P., Feldman, J., Bloch, R., and Schwartz, J., 1981. Central cardiovascular effects of taurine: Comparison with homotaurine and muscimol, J. Pharmacol. Exp. Therap. 219:213–218.Google Scholar
  31. Braun, R., and Fromageot, P., 1962. Déseamination de la taurine par Aspergillus niger, Biochim. Biophys. Acta 62:548–555.PubMedGoogle Scholar
  32. Brueton, M. J., Berger, H. M., Brown, G. A., Ablitt, L., Iyngkaran, N., and Wharton, B. A., 1978. Duodenal bile acid conjugation patterns and dietary sulphur amino acids in the newborn, Gut 19:95–98.PubMedGoogle Scholar
  33. Carroll, L., 1876. The Hunting of the Snark: An Agony in Eight Fits, Folio Society, London, 1976.Google Scholar
  34. Cavallini, D., De Marco, D., and Mondovi, B., 1956. The oxidation of cystine and other sulfur-diamines by diamine-oxidase preparations, Experientia 12:377–379.PubMedGoogle Scholar
  35. Cavallini, D., Scandurra, R., and Duprè, S., 1966. Cysteamine oxygenase, in Biological and Chemical Aspects of Oxygenases (K. Block and O. Hayaishi, eds.), Maruzen, Tokyo, pp. 73–92.Google Scholar
  36. Cavallini, D., Scandurra, R., and Duprè, S., 1971. Cysteamine oxygenase (horse kidney), Method. Enzymol. 17B:479–483.Google Scholar
  37. Cavallini, D., Federici, G., Bossa, F., and Granata, F., 1973. The protective effect of thiosulfate upon the inactivation of aspartate aminotransferase by aminoacrylic-acid-producing substrates, Eur. J. Biochem. 39:301–304.PubMedGoogle Scholar
  38. Cavallini, D., Scandurra, R., Duprè, S., Santoro, L., and Barra, D., 1976. A new pathway of taurine biosynthesis, Physiol. Chem. Phys. 8:157–160.PubMedGoogle Scholar
  39. Cavallini, D., Gaull, G. E., and Zappia, V. (eds.), 1980. Natural Sulfur Compounds: Novel Biochemical and Structural Aspects, Plenum Press, New York, 1980.Google Scholar
  40. Chanda, R., and Himwich, W. A., 1970. Taurine levels in developing rabbit brain and other organs, Develop. Psychobiol. 3:191–196.Google Scholar
  41. Chazov, R., Mal’chikova, L., Lipina, N., Reshetnaya, N., Asafov, G., and Smirnov, V., 1974. Taurine and the electrical activity of the heart, Circ. Res. 35 (Suppl. III):11–21.PubMedGoogle Scholar
  42. Chesney, R. W., Scriver, C. R., and Mohyuddin, F., 1976. Localization of the membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinuric mice, J. Clin. Invest. 57:183–193.PubMedGoogle Scholar
  43. Chesney, R. W., Jax, D. K., Scriver, C. R., and Mohyuddin, F., 1978. Taurine transport in mammalian kidney, in Taurine and Neurological Disorders (A. Barbeau and R. Huxtable, eds.), Raven Press, New York, pp. 73–93.Google Scholar
  44. Chevolot, L., 1981. Guanidine derivatives, in Marine Natural Products (P. J. Scheuer, ed.), Academic Press, London, Vol. 4.Google Scholar
  45. Chubb, J., and Huxtable, R., 1977. Adrenergic stimulation of taurine transport by the heart, Science 98:409–411.Google Scholar
  46. Chubb, J., and Huxtable, R., 1978a. Isoproterenol-stimulated taurine influx in the perfused rat heart, Eur. J. Pharmacol. 48:369–376.PubMedGoogle Scholar
  47. Chubb, J., and Huxtable, R., 1978b. The effects of isoproterenol on taurine concentration in the rat heart, Eur. J. Pharmacol. 48:357–368.PubMedGoogle Scholar
  48. Chubb, J., and Huxtable, R., 1978c. Transport and biosynthesis of taurine in the stressed heart, in Taurine and Neurological Disorders (A. Barbeau and R. J. Huxtable, eds.), Raven Press, New York, pp. 161–178.Google Scholar
  49. Cleffmann, G., 1964. Function-specific changes in the metabolism of agouti pigment cells, Exp. Cell. Res. 35:590–600.PubMedGoogle Scholar
  50. Close, R., 1960. Free amino acids of some fungi, Nature 185:609–610.PubMedGoogle Scholar
  51. Cohen, A. I., 1978. Retinal organization and function: Possible roles for taurine, in Taurine and Neurological Disorders (A. Barbeau and R. J. Huxtable, eds.), Raven Press, New York, pp. 249–264.Google Scholar
  52. Cohen, A. I., McDaniel, M., and Orr, H. T., 1973. Absolute levels of some free amino acids in normal and biologically fractionated retinas, Invest. Ophthalmol. 12:686–693.PubMedGoogle Scholar
  53. Collins, G. G. S., 1974. The rates of synthesis, uptake and disappearance of (14C) taurine in eight areas of the rat central nervous system, Brain Res. 76:447–459.PubMedGoogle Scholar
  54. Cook, D. A., Hagerman, L. M., Schneider, D. L., and Sarett, H. P., 1971. Effect of dietary taurine on fecal bile sale excretion in rats and hamsters fed cholestyramine, Proc. Soc. Exp. Biol. Med. 138:830–834.PubMedGoogle Scholar
  55. Cooper A. J. L., 1983. Biochemistry of sulfur-containing amino acids, Annu. Rev. Biochem. 52:187–222.PubMedGoogle Scholar
  56. Cooper, M. W., and Lombardini, J. B., 1982. Elevated blood taurine levels after myocardial infarction or cardiovascular surgery: Is there any significance?, in Taurine in Nutrition and Neurology (R. J. Huxtable and H. Pasantes-Morales, eds.), Plenum Press, New York, pp. 191–205.Google Scholar
  57. Crass, M. F., and Lombardini, J. B., 1977. Loss of cardiac muscle taurine after acute left ventricular ischemia, Life Sci. 21:951–958.PubMedGoogle Scholar
  58. Crass, M. F., and Lombardini, J. B., 1978. Release of tissue taurine from the oxygen-deficient perfused rat heart, Proc. Soc. Exp. Biol. Med. 157:486–488.PubMedGoogle Scholar
  59. Curtis, D. R., and Watkins, J. C., 1980. The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6:117–141.Google Scholar
  60. Curtis, D. R., Leah, J. D., and Peet, M. J., 1982. Lack of specificity of a ‘taurine antagonist’, Brain Res. 244:198–199.PubMedGoogle Scholar
  61. Davis, J. M., and Himwich, W. A., 1973. Amino acids and proteins of developing mammalian brain, in Biochemistry of the Developing Brain (W. Himwich ed.), Dekker, New York, pp. 55–110.Google Scholar
  62. De Marco, C., Bombardieri, G., Riva, F., Duprè, S., and Cavallini, S., 1965. Degradation of cystaldimine, the product of oxidative deamination of cystaminé, Biochim. Biophys. Acta 100:89–97.Google Scholar
  63. Dickinson, J. C., Rosenblum, H., and Hamilton, P. B., 1970. Ion exchange chromatography of the free amino acids in the plasma of infants under 2,500 gm at birth, Pediatrics 45:606–613.PubMedGoogle Scholar
  64. Dietrich, J., and Diacono, J., 1971. Comparison between ouabain and taurine effects on isolated rat and guinea pig hearts in low calcium medium, Life Sci. 10:499–507.Google Scholar
  65. Dolara, P., Agresti, A., Giotti, A., and Pasquini, G., 1973. Effect of taurine on calcium kinetics of guinea pig heart, Eur. J. Pharmacol. 24:352–358.PubMedGoogle Scholar
  66. Dolara, P., Ledda, F., Mugelli, A., Mantelli, L., Zilletti, L., Franconi, F., and Giotti, A., 1978. Effect of taurine on calcium, inotropism and electrical activity of the heart, in Taurine and Neurological Disorders (A. Barbeau and R. Huxtable, eds.), Raven Press, New York, pp. 151–159.Google Scholar
  67. Duprè, S., and DeMarco, C., 1964. Activity of some animal tissues on the oxidation of cysteamine to hypotaurine in the presence of sulfide, Ital. J. Biochem. 13:386–390.PubMedGoogle Scholar
  68. Duprè, S., Graziani, M. T., Rosei, M. A., Fabi, A., and Del Grosso, E., 1970. The enzymatic breakdown of pantethine to pantothenic acid and cystaminé, Eur. J. Biochem. 16:571–578.PubMedGoogle Scholar
  69. Duprè, S., Rosei, M. A., Bellussi, L., Del Grosso, E., and Cavallini, D., 1973. The substrate specificity of pantethinase, Eur. J. Biochem. 40:103–107.PubMedGoogle Scholar
  70. Dziewiatkowski, D. D., 1954. Utilization of sulfate sulphur in the rat for the synthesis of cysteine, J. Biol. Chem. 207:181–186.PubMedGoogle Scholar
  71. Ennor, A. H., and Morrison, J. F., 1958. Biochemistry of the phosphagens and related guanaidines, Physiol. Rev. 38:631–674.PubMedGoogle Scholar
  72. Ericson, J. E., and Carlson, B., 1954. Studies on the occurrence of amino acids, niacin and pantothenic acid in marine algae, Ark. Kemi. 6:511–522.Google Scholar
  73. Ewetz, L., and Sörbo, B., 1966. Characteristics of the cysteine sulfinate-forming enzyme system in rat liver, Biochim. Biophys. Acta 128:296–305.PubMedGoogle Scholar
  74. Fabisiak, J. P., and Schwark, W. S., 1982. Cerebral free amino acids in the amygdaloid kindling model of epilepsy, Neuropharmacology 21:179–182.PubMedGoogle Scholar
  75. Federici, G., Duprè, S., Rosei, M. A., Granta, F., and Orlando, M., 1974. The metabolism of taurine in the living rat, Physiol. Chem. Phys. 6:411–416.PubMedGoogle Scholar
  76. Fellman, J. H., and Roth, E. S., 1982. Hypotaurine aminotransferase, in Taurine in Nutrition and Neurology (R. J. Huxtable and H. Pasantes-Morales, eds.), Plenum Press, New York, pp. 99–113.Google Scholar
  77. Fellman, J. H., and Roth, E. S., 1985. The biological oxidation of hypotaurine to taurine: Hypotaurine as an antioxidant, in Taurine: Biological Actions and Clinical Perspectives (S. S. Oja, L. Ahtee, P. Kontro, and M. R. Paasonen, eds.), Alan R. Liss, New York, pp. 71–82.Google Scholar
  78. Fellman, J. H., Roth, E. S., and Fujita, T. S., 1978. Taurine is not metabolized to isethionate in mammalian tissues, in Taurine and Neurological Disorders (A. Barbeau and R. J. Huxtable, eds.), Raven Press, New York, pp. 19–24.Google Scholar
  79. Fellman, J. H., Roth, E. S., Avedovech, N. A., and McCarthy, K. D., 1980a. The metabolism of taurine to isethionate, Arch. Biochem. Biophys. 204:560–567.PubMedGoogle Scholar
  80. Fellman, J. H., Roth, E. S., Avedovech, N. A., and McCarthy, K. D., 1980b. Mammalian hypotaurine aminotransferase: Isethionate is not a product, Life Sci. 27:1999–2004.PubMedGoogle Scholar
  81. Feuer, L., 1981. Biological effects of gamma-L-glutamyl-taurine (glutaurine): A new parathyroid hormone, in The Effects of Taurine on Excitable Tissues (S. W. Schaffer, S. I. Baskin, and J. J. Kocsis, eds.), Spectrum Publications, New York, pp. 31–39.Google Scholar
  82. Feuer, L., Banyai, B., and Hercsel, J., 1977. Influence of protein free aqueous extract of parathyroid powder on serum vitamin A level in rats, Experientia 33:1005–1006.PubMedGoogle Scholar
  83. Feuer, L., Torok, O., and Csaba, G., 1978a. Effect of glutaurine on vitamin A and prednisolone treated thymus cultures, Acta Morphol. Acad. Sci. Hung. 26:75–78.PubMedGoogle Scholar
  84. Feuer, L., Torok, O., and Csaba, G., 1978b. Effect of glutaurine, a newly discovered parathyroid hormone, on rat thymus cultures, Acta Morphol. Acad. Sci. Hung. 26:87–94.PubMedGoogle Scholar
  85. Feuer, L., Torok, L. H., and Csaba, G., 1978c. Effect of litoralon on the development of goblet cells of the intestinal mucosa during metamorphosis of the frog, Acta Morphol. Acad. Sci. Hung. 26:319–324.PubMedGoogle Scholar
  86. Feuer, L., Torok, L. H., Kapa, E., and Csaba, G., 1978d. The effect of gamma-L-glutamyl-taurine (litoralon) on the amphibian metamorphosis, Comp. Biochem. Physiol. 61C:67–71.Google Scholar
  87. Filla, A., Butterworth, R. F., and Barbeau, A., 1979. Pilot studies on membranes and some transport mechanisms in Friedreich’s ataxia, Can. J. Neurol. Sci. 6:285–289.PubMedGoogle Scholar
  88. Finkelstein, J. D., Kyle, W. E., Harris, B. J., and Martin, J. J., 1982. Methionine metabolism in mammals: Concentration of metabolites in rat tissues, J. Nutr. 112:1011–1018.PubMedGoogle Scholar
  89. Forster, R. P., and Goldstein, L., 1979. Amino acids and cell volume regulation, Yale J. Biol. Med. 52:497–515.PubMedGoogle Scholar
  90. Franconi, F., Giotti, A., Manzini, S., and Martini, F., 1982a. The effect of taurine on high potassium-and noradrenaline-induced contraction in rabbit ear artery, Br. J. Pharmacol. 75:605–612.PubMedGoogle Scholar
  91. Franconi, F., Giotti, A., Manzini, S., Martini, F., Stendardi, I., and Zilleti, L., 1982b. Observations on the action of taurine at arterial and cardiac levels, in Taurine in Nutrition and Neurology (R. J. Huxtable and H. Pasantes-Morales, eds.), Plenum Press, New York, pp. 181–190.Google Scholar
  92. Franconi, F., Martini, F., Stendardi, I., Matucci, R., Zilleti, L., and Giotti, A., 1982c. Effect of taurine on calcium level and contractility in guinea pig ventricular strips, Biochem. Pharmacol. 31:3181–3186.PubMedGoogle Scholar
  93. Fromageot, P. F., and Chapeville, F., 1956. Incorporation de sulfite dans l’animal supérieur, in Colloque sur la Biochimie du Soufre, Centre National de la Recherche Scientifique, Paris, pp. 171–180.Google Scholar
  94. Fugelli, K., 1980. Amino acid transport coupled to cell volume regulation in anisosmotic media, in Animals and Environmental Fitness (R. Gilles, ed.), Pergamon Press, Oxford, pp. 27–41.Google Scholar
  95. Fugelli, K., and Rohrs, H., 1980. The effect of Na+ and osmolality on the influx and steady state distribution of taurine and gamma-aminobutyric acid in flounder (Platichtysflesus) erythrocytes, Comp. Biochem. Physiol. 67:545–551.Google Scholar
  96. Furukawa, T., Yamada, K., Kushika, K., Ono, N., and Tokunaga, T., 1982. Central effects of taurine: Antagonistic effects on central actions of angiotensin, in Taurine in Nutrition and Neurology (R. J. Huxtable and H. Pasantes-Morales, eds.), Plenum Press, New York, pp. 345–359.Google Scholar
  97. Gabellec, M. M., Recasens, M., and Mandel, P., 1978. Developmental pattern of cysteine sulphinic acid transaminase activity in some areas of mice nervous system, Life Sci. 23:1263–1269.PubMedGoogle Scholar
  98. Gaitonde, M. K., 1967. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids, Biochem. J. 104:627–633.PubMedGoogle Scholar
  99. Gaull, G. E., and Rassin, D. K., 1979. Taurine and brain development: Human and animal correlates, in Neural Growth and Differentiation (E. Meisami and M. A. B. Barzier, eds.), Raven Press, New York, pp. 461–477.Google Scholar
  100. Gaull, G. E., and Rassin, D. K., 1980. Taurine in development and nutrition, in Sulphur in Biology, Ciha Found. Symp. 72, Excerpta Medica, Amsterdam, pp. 271-288.Google Scholar
  101. Gaull, G. E., Rassin, D. K., Raiha, N. C. R., and Heinonen, K. 1977. Milk protein quantity and quality in low birth weight infants. III. Effects on sulfur-containing amino acids in plasma and urine, J. Pediat. 90:348–355.PubMedGoogle Scholar
  102. Geggel, H. S., Ament, M. E., Heckenlively, J. R., Kopple, J. D., 1982. Evidence that taurine is an essential amino acid in children receiving total parenteral nutrition, Clin. Res. 30:486A.Google Scholar
  103. Geggel, H. S., Ament, M. E., Heckenlively, J. R., Martin, D. A., and Kopple, J. D., 1985. Nutritional requirement for taurine in patients receiving long-term parenteral nutrition, N. Engl. J. Med. 312:142–146.PubMedGoogle Scholar
  104. Goodman, H. O., Connolly, B. M., McLean, W., and Resnick, M., 1980. Taurine transport in epilepsy, Clin. Chem. 26:414–419.PubMedGoogle Scholar
  105. Green, J. P., and Robinson, J. D., 1960. Cerebroside sulfate (Sulfatide A) in some organs of the rat and in most mouse cells, J. Biol. Chem. 235:1621–1624.PubMedGoogle Scholar
  106. Green, R. M., and Elce, J. S., 1975. Acetylation of S-substituted cysteines by a rat liver and kidney microsomal N-acetyltransferase, Biochem. J. 147:283–289.PubMedGoogle Scholar
  107. Greenberg, D. M., 1975. Biosynthesis of cysteine and cystine, in Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 505–528.Google Scholar
  108. Griffith, O. W., 1983. Cysteine sulfinate metabolism. Altered partitioning between transamination and decarboxylation following administration of ß-methylene aspartate. J. Biol. Chem. 258:1591.PubMedGoogle Scholar
  109. Guidotti, A., and Costagli, P. F., 1970. Occurrence of guanidinotaurine in mammals: variation of urinary and tissue concentration after guanidinotaurine administration, Pharm. Res. Comm. 2:341–354.Google Scholar
  110. Guidotti, A., Badiani, G., and Giotti, A., 1971. Potentiation by taurine of inotropic effect of strophanthin K on guinea pig isolated auricles, Pharmacol. Res. Commun. 3:29–38.Google Scholar
  111. Guion-Rain, M. C., and Chatagner, F., 1972. Rat liver cysteine sulfinate decarboxylase: Some observations about substrate specificity, Biochim. Biophys. Acta 276:272–276.PubMedGoogle Scholar
  112. Guion-Rain, M.-C., Portemer, C., and Chatagner, F., 1975. Rat liver cysteine sulfinate decarboxylase: Purification, new appraisal of the molecular weight and determination of catalytic properties, Biochim. Biophys. Acta 384:265–276.Google Scholar
  113. Halprin, K. M., and Ohkawara, A., 1967. Human pigmentation: The role of glutathione, in Advances in Biology of Skin (W. Montagna and F. Hu, eds.), Pergamon Press, New York, pp. 241–251.Google Scholar
  114. Haslewood, G. A. D., 1964. The biological significance of chemical differences in bile salts, Biol. Rev. 39:537–574.PubMedGoogle Scholar
  115. Haslewood, G. A. D., 1967. Bile Salts, Methuen and Co., London, 116 pp.Google Scholar
  116. Haslewood, G. A. D., 1978. The Biological Importance of Bile Salts, North-Holland, Amsterdam, 206 pp.Google Scholar
  117. Hayes, K. C., Stephan, Z. F., and Sturman, J. A., 1980. Growth depression in taurinedepleted infant monkeys, J. Nutr. 110:2058–2064.PubMedGoogle Scholar
  118. Heaton, K. W., 1972. Bile Salts in Health and Disease, Williams and Wilkins Co., Baltimore, 352 pp.Google Scholar
  119. Hill, L. J., and Martin, W. G., 1973. The synthesis of taurine from sulfate V. Regulatory modifiers of the chick liver enzyme system, Proc. Soc. Exp. Biol. Med. 144:530–533.PubMedGoogle Scholar
  120. Himwich, W. A., and Agrawal, H. C., 1969. Amino acids, Handbook of Neurochemistry 1:33–52.Google Scholar
  121. Hofmann, A. F., and Small, D. M., 1967. Detergent properties of bile salts: Correlation with physiological function, Annu. Rev. Med. 18:333–376.PubMedGoogle Scholar
  122. Hofmann, A. F., 1976. The enterohepatic circulation of bile acids in man, Adv. Int. Med. 21:501–534.Google Scholar
  123. Hol, W. G. J., Lijk, L. J., and Kalk, K. H., 1983. The high resolution three-dimensional structure of bovine liver rhodanese, Fund. Appl. Toxicol. 3:370–376.Google Scholar
  124. Holtman, J. R., Jr., Buller, A. L., Da Silva, A. M., Hamosh, R., and Gillis, R. A., 1983. Respiratory depression produced by centrally administered taurine in the cat, Life Sci. 32:2313–2320.PubMedGoogle Scholar
  125. Horst, C. J. G., van der, and Grooten, H. J. G., 1966. The occurrence of hypotaurine and other sulfur-containing amino acids in seminal plasma and spermatozoa of boar, bull and dog, Biochim. Biophys. Acta 117:495–497.PubMedGoogle Scholar
  126. Hoskin, F. C. G., and Noonan, P. K., 1980. Taurine and isethionate in squid nerve, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 253–264.Google Scholar
  127. Howard, A. M., and Courtenay Evans, R. J., 1974. Secholex, clofibrate and taurine in hyperlipidemia, Atherosclerosis 20:105–116.PubMedGoogle Scholar
  128. Hoyaux, J., Gilles, R., and Jeuniaux, C. H., 1976. Osmoregulation in molluscs of the intertidal zone, Comp. Biochem. Physiol. 53A:361–365.Google Scholar
  129. Hutson, D. H., and Casida, J. E., 1978. Taurine conjugation in metabolism of 3-phenoxybenzoic acid and the pyrethroid insecticide cypermethrin in mouse, Xenobiotica 8:565–571.PubMedGoogle Scholar
  130. Huxtable, R. J., 1976. Metabolism and function of taurine in the heart, in Taurine (R. Huxtable, and A. Barbeau eds.), Raven Press, New York, pp. 99–120.Google Scholar
  131. Huxtable, R. J., 1978. Regulation of taurine in the heart, in Taurine and Neurological Disorders (A. Barbeau and R. Huxtable eds.), Raven Press, New York, pp. 5–17.Google Scholar
  132. Huxtable, R. J. 1980a. Does taurine have a function? Fed. Proc. 39:2678–2708.PubMedGoogle Scholar
  133. Huxtable, R. J., 1980b. The regulation and function of taurine in the heart and other organs, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 277–293.Google Scholar
  134. Huxtable, R. J., 1981a. Insights on function: Metabolism and pharmacology of taurine in the brain, in The Role of Peptides and Amino Acids in Neurotransmitters (J.B. Lombardini, and A. Kenny eds.), Alan R. Liss, New York, pp. 53–97.Google Scholar
  135. Huxtable, R. J. 1981b. Source and turnover rates of taurine in nursing and weaned rat pups, J. Nutri. 111:1275–1286.Google Scholar
  136. Huxtable, R. J., 1982a. Guanidinoethane sulfonate and the disposition of dietary taurine in the rat, J. Nutr. 12:2293–2300.Google Scholar
  137. Huxtable, R. J., 1982b. Taurine: Epilepsy, intropy and eyesight, Trends Pharmacol. Sci. 3:21–25.Google Scholar
  138. Huxtable, R. J., and Barbeau, A., (eds.), 1976. Taurine, Raven Press, New York, 378 pp.Google Scholar
  139. Huxtable, R., and Bressler, R., 1972. Taurine and isethionic acid: Distribution and interconversion in the rat, J. Nutri. 102:805–814.Google Scholar
  140. Huxtable, R., and Bressler, R., 1973. Effect of taurine on a muscle intracellular membrane, Biochim. Biophys. Acta 323:573–583.PubMedGoogle Scholar
  141. Huxtable, R., and Bressler, R., 1974a. Elevation of taurine in human congestive heart failure, Life Sci. 14:1353–1359.PubMedGoogle Scholar
  142. Huxtable, R., and Bressler, R., 1974b. Taurine concentration in congestive heart failure, Science 184:1187–1188.PubMedGoogle Scholar
  143. Huxtable, R., and Bressler, R., 1976. Metabolism of cysteamine to taurine, in Taurine (R. Huxtable and A. Barbeau, eds.), Raven Press, New York, pp. 45–58.Google Scholar
  144. Huxtable, R., and Chubb, J., 1977. Adrenergic stimulation of taurine transport by the heart, Science 198:409–411.PubMedGoogle Scholar
  145. Huxtable, R., and Laird, H. E., 1978. The prolonged anticonvulsant action of taurine on genetically determined seizure susceptibility, Can. J. Neurol. Sci. 5:215–221.PubMedGoogle Scholar
  146. Huxtable, R. J., and Lippincott, S. E., 1981. Comparative metabolism and taurine-depleting effects of guanidinoethane sulfonate in cats, mice and guinea pigs, Arch. Biochem. Biophys. 210:698–709.PubMedGoogle Scholar
  147. Huxtable, R. J., and Lippincott, S. E., 1982a. Diet and biosynthesis as sources of taurine in the mouse, J. Nutr. 112:1003–1010.PubMedGoogle Scholar
  148. Huxtable, R. J., and Lippincott, S. E., 1982b. Relative contribution of diet and biosynthesis to the taurine content of the adult rat, Drug-Nutrient Interactions 1:153–168.PubMedGoogle Scholar
  149. Huxtable, R. J., and Lippincott, S. E., 1982c. Sources and turnover rates of taurine in newborn, weanling, and mature rats, in Taurine in Nutrition and Neurology (R. J. Huxtable and H. Pasantes-Morales, eds.), Plenum Press, New York, pp. 23–45.Google Scholar
  150. Huxtable, R. J., and Lippincott, S. E., 1983. Relative contribution of the mother, the nurse and endogenous synthesis to the taurine content of the newborn and suckling rat, Ann. Nutr. Metab. 27:107–116.PubMedGoogle Scholar
  151. Huxtable, R. J., and Nakagawa, K., 1985. The anticonvulsant actions of two taurine derivatives in genetic and chemically induced seizures, in Taurine: Biological Actions and Clinical Perspectives (S. S. Oja, L. Ahtee, P. Kontro, and M. K. Paasonen, eds.), Alan R. Liss, New York, pp. 435–448.Google Scholar
  152. Huxtable, R. J., and Pasantes-Morales, H. (eds.), 1982. Taurine in Nutrition and Neurology, Plenum Press, New York, 551 pp.Google Scholar
  153. Huxtable, R. J., and Sebring, L., 1983. Cardiovascular actions of taurine, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuriyama, R. J. Huxtable, and H. Iwata, eds.), Alan R. Liss, New York, pp. 195–209.Google Scholar
  154. Huxtable, R., Laird, H. E., and Lippincott, S. E., 1979. The transport of taurine in the heart and the rapid depletion of tissue taurine content by guanidinoethyl sulfonate, J. Pharmacol. Exp. Ther. 211:465–471.PubMedGoogle Scholar
  155. Huxtable, R., Chubb, J., and Azari, J., 1980. Physiological and experimental regulation of taurine content in the heart, Fed. Proc. 39:2685–2690.PubMedGoogle Scholar
  156. Huxtable, R. J., Laird, H., and Lippincott, S. E., 1981. Rapid depletion of tissue taurine content by guanidinoethyl sulfonate, in The Action of Taurine on Excitable Tissues (S. W. Schaffer, S. I. Baskin, and J. J. Kocsis, eds.), Spectrum Press, New York, pp. 236–241.Google Scholar
  157. Huxtable, R. J., Laird, H., Bonhaurs, D., and Thies, A. C., 1982. Correlations between amino acid concentrations in brains of seizure-susceptible and seizure-resistant rats, Neurochem. Int. 4:73–78.PubMedGoogle Scholar
  158. Huxtable, R. J., Bonhaus, D., Nakagawa, K., Laird, H. E., and Pasantes-Morales, H., 1985. Taurine and the actions of guanidinoethane sulfonate, in Guanidines: Historical, Biological, Biochemical and Clinical Aspects of the Naturally-Occurring Guanidino Compounds (A. Mori, ed.), Plenum Press, New York, pp. 213–226.Google Scholar
  159. Huxtable, R. J., Bonhaus, D., and Lehmann, A., 1986. Excitatory and inhibitory amino acids in the genetically seizure-susceptible rat, in Neurotransmitters in Epilepsy (P. Morselli and G. Nistico, eds.), Raven Press, in press.Google Scholar
  160. Irving, C. S., Hammer, B. E., Danyluk, S. S., and Klein, P. D., 1982. Coordination and binding of taurine as determined by nuclear magnetic resonance measurements on relabeled taurine, in Taurine in Nutrition and Neurology (R. J. Huxtable and H. Pasantes-Morales, eds.), Plenum Press, New York, pp. 5–17.Google Scholar
  161. Ito, K., 1963. Distribution of D-cysteinolic acid in marine algae, Bull. Jap. Soc. Scient. Fish. 29:771–775.Google Scholar
  162. Ito, S., and Fujita, K., 1981. Formation of cysteine conjugates from dihydroxyphenylalanine and its S-cysteinyl derivatives by peroxidase-catalyzed oxidation, Biochim. Biophys. Acta 672:151–157.PubMedGoogle Scholar
  163. Ito, S., and Prota, G., 1977. A facile one-step synthesis of cysteinyldopas using mushroom tyrosinase, Experientia 33:1118–1119.PubMedGoogle Scholar
  164. Iwata, H., and Baba, A., 1983. Neurochemical basis of cysteine sulfinic acid in the central nervous system, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuriyama, R. J. Huxtable, and H. Iwata, eds.), Alan R. Liss, New York, pp. 161-168. Iwata, H., and Fujimoto, S., 1976. Potentiation by taurine of the inotropic effect of ouabain and the content of intracellular Ca++ and taurine in the heart, Experientia 32:1559–1561.Google Scholar
  165. Izumi, K., Kishita, C., Nakagawa, K., Huxtable, R. J., Shimizu, T., Koja, T., and Fukuda, T., 1985. Modification of the antiepileptic actions of phénobarbital and phenytoin by the taurine transport inhibitor, guanidinoethane sulfonate, Eur. J. Pharmacol. 110:219–224.PubMedGoogle Scholar
  166. Jacobsen, J. G., and Smith, L. H., 1963. Comparison of decarboxylase of cysteine sulphinic acid-l-14C and cysteic acid-l-14C by human, dog, and rat liver and brain, Nature 200:575–577.PubMedGoogle Scholar
  167. Jacobsen, J. G., and Smith, L. H., 1968. Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev. 48:424–511.PubMedGoogle Scholar
  168. Jacobsen, J. G., Thomas, L. L., and Smith, L. H., 1964. Properties and distribution of mammalian L-cysteine sulfinate carboxylases, Biochim. Biophys. Acta 85:103–116.PubMedGoogle Scholar
  169. Jacobsen, J. G., Collins, L. L., and Smith, L. H., 1967. Urinary excretion of isethionic acid in man, Nature 214:1247–1248.PubMedGoogle Scholar
  170. James, M. O., 1982. Disposition and taurine conjugation of 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorphenoxyacetic acid, bis(4-chlorophenyl)acetic acid, and phenylacetic acid in the spiny lobster, Panulirus argus, Drug Metab. Dispos. 10:516–522.PubMedGoogle Scholar
  171. James, M. O., and Bend, J. P., 1976. Taurine conjugation of 2,4-dichlorophenoxyacetic acid in 2 marine species, Xenobiotica 6:395–398.Google Scholar
  172. James, M. O., Smith, R. L., and Williams, R. T., 1972. The conjugation of 4-chloro-and 4-nitro-phenylacetic acids in man, monkey and rat, Xenobiotica 2:499–506.PubMedGoogle Scholar
  173. Jarabak, R., and Westley, J., 1980. 3-Mercaptopyruvate sulfurtransferase: Rapid equilibrium-ordered mechanism with cyanide as the acceptor substrate, Biochemistry 19:900–904.PubMedGoogle Scholar
  174. Jeuniaux, C., Bricteux-Gregoire, S., and Florkin, M., 1962. Rôle osmorégulateur intracellulaire du glycocolle et de la taurine chez l’étoile de mer, Asterias rubens L., Arch. Int. Physiol. Biochim. 70:155.Google Scholar
  175. Jocelyn, P. C., 1972. Biochemistry of the SH Group, Academic Press, London, 404 pp.Google Scholar
  176. John, R. A., and Fasella, P., 1969. The reaction of L-serine O-sulfonate with aspartate aminotransferase, Biochemistry 8:4477–4482.PubMedGoogle Scholar
  177. Johnson, S., 1768. Preface to Shakespeare. The Works of Samuel Johnson, Vol. 2 (A. Murphy, ed.), T. Tegg, London, 1824, pp. 77–140.Google Scholar
  178. Jordan, B. J., and Rance, M. J., 1974. Taurine conjugation of fenclofenac in the dog, J. Pharm. Pharmacol. 26:359–361.PubMedGoogle Scholar
  179. Kaczmarek, L. K., 1976. A comparison of the evidence for taurine and GABA as neurotransmitters, in Taurine (R. J. Huxtable and A. Barbeau, eds.), Raven Press, New York, pp. 283–292.Google Scholar
  180. Kaczmarek, L. K., Agrawal, H. C., and Davison, A. N., 1971. The biochemistry of taurine in developing rat brain, in Inherited Disorders of Sulphur Metabolism (N. A. J. Carsen and D. N. Raine, eds.), Churchill, London, pp. 63–68.Google Scholar
  181. Kaihara, M., and Price, J. M., 1961. Quinaldyglycyltaurine: A urinary metabolite of quinaldic acid and kynurenic acid in the cat, J. Biol. Chem. 236:508–511.PubMedGoogle Scholar
  182. Kennedy, A. J., and Voaden, M. J., 1974. Free amino acids in the photoreceptor cells of the frog retina, J. Neurochem. 23:1093–1095.PubMedGoogle Scholar
  183. Khatter, J. C., Soni, P. L., Hoeschen, R. J., Alto, L. E., and Dhalla, N. S., 1981. Subcellular effects of taurine on guinea pig heart, in The Effects of Taurine on Excitable Tissues (S. W. Schaffer, S. I. Baskin, and J. J. Kocsis, eds.), Spectrum Publications, New York, pp. 281–294.Google Scholar
  184. Knopf, K., Sturman, J., Armstrong, M., and Hayes, K. C., 1978. Taurine: An essential nutrient for the cat, J. Nutr. 108:773–778.PubMedGoogle Scholar
  185. Kobayashi, K., 1970. Studies on the new metabolites of cysteine: 1. Orientation studies on the in vitro formation of S-(carboxymethylthio) cysteine and S-(2-hydroxy-2-carboxyethylthio)-cysteine from cysteine and the related compounds, Physiol. Chem. Phys. 2:455–466.Google Scholar
  186. Kochakian, C. D., 1973. Hypotaurine: Regulation of production in seminal vesicles and prostate of guinea-pig by testosterone, Nature 241:202–203.PubMedGoogle Scholar
  187. Kochakian, C. D., 1976. Influence of testosterone on the concentration of hypotaurine and taurine in the reproductive tract of the male guinea pig, rat and mouse, in Taurine (R. J. Huxtable and A. Barbeau, eds.), Raven Press, New York, pp. 327–334.Google Scholar
  188. Kochakian, C. D., 1980. Sulfur amino acids in the reproductive tract of male guinea pigs, rats, mice and several marine animals, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 213–224.Google Scholar
  189. Koechlin, B. A., 1955. On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its nerve pattern, J. Biophys. Biochem. Cytol. 1:511.PubMedGoogle Scholar
  190. Koj, A., 1980. Subcellular compartmentation and biological functions of mercaptopyruvate sulfurtransferase and rhodanese, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, V. Zappia, eds.), Plenum Press, New York, pp. 493–503.Google Scholar
  191. Kontro, P., and Oja, S. S., 1980. Hypotaurine oxidation by mouse tissues, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 201–212.Google Scholar
  192. Kramer, J. H., Chovan, J. P., and Schaffer, S. W., 1981. The effect of taurine on calcium paradox and ischemic heart failure, Am. J. Physiol. 240:H238–H246.PubMedGoogle Scholar
  193. Krijgsheld, K. R., Glazenburg, E. J., Scholtens, E., and Mulder, G. J., 1981. The oxidation of L-and D-cysteine to inorganic sulfate and taurine in the rat, Biochim. Biophys. Acta 677:7–12.PubMedGoogle Scholar
  194. Kun, E., 1969. Selected aspects of sulfur metabolism, in Metabolic Pathways, Vol. III (D. M. Greenberg, ed.), Academic Press, New York, pp. 375–401.Google Scholar
  195. Kuriyama, K., 1961. New ninhydrin-reactive substance from red algae, Nature 172:969.Google Scholar
  196. Kuriyama, K., Huxtable, R. J., and H. Iwata (eds.), 1983. Sulfur Amino Acids: Biochemical and Clinical Aspects, Alan R. Liss, New York, 1983, 485 pp.Google Scholar
  197. Laird, H. E., and Huxtable, R. J., 1976. Effect of taurine in audiogenic seizure response in rats, in Taurine (R. J. Huxtable and A. Barbeau, eds.), Raven Press, New York, pp. 267–274.Google Scholar
  198. Laird, H. E., and Huxtable, R. J., 1978. Taurine and adiogenic epilepsy, in Taurine and Neurological Disorders (A. Barbeau and R. J. Huxtable, eds.), Raven Press, New York, pp. 339–357.Google Scholar
  199. Lefauconnier, J. M., Urban, F., and Mandel, P., 1978. Taurine transport into the brain in the rat, Biochimie 60:381–387.PubMedGoogle Scholar
  200. Leibfreid, M. L., and Bavister, B. D., 1981. The effects of taurine and hypotaurine on in vitro fertilization in the golden hamster, J. Reprod. Fertil. 66:87–93.Google Scholar
  201. Lemieux, B., Barbeau, A., Beroniade, V., Shapcott, D., Breton, G., Geoffroy, G., and Melançon, S., 1976. Amino acid metabolism in Friedreich’s ataxia, Can. J. Neurol. Sci. 3:373–378.PubMedGoogle Scholar
  202. Lin, Y. C., Demeio, R. H., and Metione, R. M., 1971. Purification and properties of rat liver cysteine sulfinate decarboxylase, Biochim. Biophys. Acta 250:558–567.PubMedGoogle Scholar
  203. Lindén, I.-B., Gothoni, G., Kontro, P., and Oja, S. S., 1983. Anticonvulsant activity of 2-phthalimidoethanesulfonamides: New derivatives of taurine, Neurochem. Int. 5:319–324.PubMedGoogle Scholar
  204. Lombardini, J. B., 1980a. Effects of isoproterenol and methoxamine on the contents of taurine in rat tissues, J. Pharmacol. Exp. Therap. 213:399–405.Google Scholar
  205. Lombardini, J. B., 1980b. Effects of ischemia on taurine levels, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 255–306.Google Scholar
  206. Lombardini, J. B., and Bricker, D. L., 1981. Effects of cardiovascular surgery on blood concentrations of taurine and amino acids, Proc. Soc. Exp. Biol. Med. 167:498–505.PubMedGoogle Scholar
  207. Lombardini, J. B., and Cooper, M. W., 1981. Elevated blood taurine levels in acute and evolving myocardial infarction, J. Lab. Clin. Med. 98:849–859.PubMedGoogle Scholar
  208. Lombardini, J. B., and Homan, J. A., 1979. Rate of disappearance of isethionic acid in the rat central nervous system, Neurochem. Res. 4:449–455.PubMedGoogle Scholar
  209. Lombardini, J. B., Singer, T. P., and Boyer, B., 1969a. Cysteine oxygenase. II. Studies on the mechanism of the reaction with 18oxygen, J. Biol. Chem. 244:1172–1175.PubMedGoogle Scholar
  210. Lombardini, J. B., Turini, P., Biggs, D. R., and Singer, T. P., 1969b. Cysteine oxygenase. I. General properties, Physiol. Chem. Phys. 1:1–23.Google Scholar
  211. Mack, G., and Mandel, P. 1976. Inhibition du comportment muricide du rat par la taurine, C. R. Acad. Sci. 283:361–362.Google Scholar
  212. Makisumi, S., 1961. Guanidino compounds from a sea-anemone, Anthropleura japonica Verrill, J. Biochem. (Tokyo) 49:284–291.Google Scholar
  213. Mandel, P., Pasantes-Morales, H., and Urban P. K., 1976. Taurine, a putative neurotransmitter mitter in retina, in Transmitters in the Visual Process (S. L. Bontin, ed.), Pergamon Press, New York, pp. 89–105.Google Scholar
  214. Mapson, L. W., 1953. The estimation of oxidized glutathione, Biochem. J. 55:714–717.PubMedGoogle Scholar
  215. Marnela, K.-M., Timonen, M., and Lahdesmaki, P., 1984. Mass spectrometric analyses of brain synaptic peptides containing taurine, J. Neurochem. 43; 1650–1653.PubMedGoogle Scholar
  216. Marquardt, P., and Vogg, G., 1952. Pharmakologische und chemische Untersuchungen über Wirkstoffe in Birnenpollen, Arzneim. Forsch. 2:267–271.Google Scholar
  217. Martin, W. G., Sass, N. L., Hill, L., Tarka, S., and Truex, R., 1972. The synthesis of taurine from sulfate IV. An alternative pathway for taurine synthesis by the rat, Proc. Soc. Exp. Biol. Med. 141:632–633.PubMedGoogle Scholar
  218. Martin, W. G., Truex, C. R., Tarka, S. M., Hill, L. J., and Gorby, W. G., 1974. The synthesis of taurine from sulfate VIII. A constitutive enzyme in mammals, Proc. Soc. Exp. Biol. Med. 147:563–565.PubMedGoogle Scholar
  219. McBroom M. J., and Welty, J. D., 1977. Effect of taurine on heart calcium in the cardiomyopathy hamster, J. Mol. Cell. Cardiol. 9:853–859.PubMedGoogle Scholar
  220. Measures, J. C., 1975. Role of amino acids in osmoregulation of non-halophilic bacteria, Nature 257:398–400.PubMedGoogle Scholar
  221. Meister, A., 1952. Enzymatic preparation of ß-keto acids, J. Biol. Chem. 197:309–317.PubMedGoogle Scholar
  222. Meizel, S., Lui, C. W., Working, H., and Misny, R. J., 1980. Taurine and hypotaurine; Their effect on motility, capacitation and the acrosome reaction of hamster sperm in vitro and their presence in sperm and reproductive tract fluids of several mammals, Dev. Growth Differ. 22:483–494.Google Scholar
  223. Millard, W. J., Sagay, S. M., and Martin, J. B., 1985. Cysteamine-induced depletion of somatostatin and prolactin, Fed. Proc. 44;2546–2550.PubMedGoogle Scholar
  224. Miraglia, R. J., Martin, W. G., Spaeth, D. G., and Patrick, H., 1966. On the synthesis of taurine from sulfate by the chick. I. Influential dietary factors, Proc. Soc. Exp. Biol. Med. 123:725–730.PubMedGoogle Scholar
  225. Misra, C. H., and Olney, J. W., 1975. Cysteine oxidase in brain, Brain Res. 97:117–126.PubMedGoogle Scholar
  226. Mori, A., Hosotani, M., and Tye, L. C., 1974. Studies on brain guanidino compounds by automatic liquid chromatography, Biochem. Med. 10:8–14.PubMedGoogle Scholar
  227. Mori, A., Katayama, Y., Yokoi, I., and Matsumoto, M., 1981. Inhibition of taurocyamine (guanidinotaurine)-induced seizures by taurine, in The Actions of Taurine on Excitable Tissues (S. W. Schaffer, S. I. Baskin, and J.J. Kocsis, eds.), Spectrum Publications, New York, pp. 41–48.Google Scholar
  228. Nair, P. P., 1973. Enzymes in bile acid metabolism, in The Bile Acids, Vol. 2 (P. P. Nair and D. Kritchevsky, eds.), Plenum Press, New York, pp. 259–271.Google Scholar
  229. Nakagawa, J., and Huxtable, R. J., 1985. The anticonvulsive actions of two lipophilic taurine derivatives, Neurochem. Int. 7:819–824.PubMedGoogle Scholar
  230. Nathan, R. D., and Crass, M. F., 1982. Electrophysiological effects of taurine in cardiac Purkinje fibers and myocardial taurine loss during ischemia. Is there a relationship?, in Taurine in Nutrition and Neurology (R. J. Huxtable and H. Pasantes-Morales, eds.), Plenum Press, New York, pp. 165–180.Google Scholar
  231. Newman, W. H., Frangakis, C. J., Cross, D. S., and Bressler, R., 1977. A relation between myocardial taurine content and pulmonary wedge pressure in dogs with heart failure, Physiol. Chem. Phys. 9:259–263.PubMedGoogle Scholar
  232. Nickerson, W. J., and Romano, A. H., 1952. Enzymatic reduction of cystine by coenzyme I (DPNH), Science 115:676–678.PubMedGoogle Scholar
  233. Nkpa, N. N., and Chedekel, M. R., 1981. Mechanistic studies on the addition of cysteine to 3,4-dehydroxyphenyl alanine, J. Org. Chem. 46:213–215.Google Scholar
  234. Oja, S. S., Kontro, P., and Lahdesmaki, P., 1977. Amino acids as inhibitory neurotransmitters, Prog. Pharmacol. 1:1–119.Google Scholar
  235. Oja, S. S., Kontro, P., and Linden, I.-B., 1983. Anticonvulsant activity of some 2-aminoethanesulphonic acid (taurine) derivatives, Eur. J. Pharmacol. 87:191–208.PubMedGoogle Scholar
  236. Oja, S. S., Ahtee, L. Kontro, P., and Paasonen, M. K., 1985. Taurine: Biological Actions and Clinical Perspectives, Alan R. Liss, New York, 483 pp.Google Scholar
  237. Okamoto, K., Kimura, H., and Sakai, Y., 1983. Antagonistic action of 6-aminomethyl-3-methyl-4H,1,2,4-benzothiadiazine-1,1-dioxide (TAG), and evidence for a transmitter role of taurine in stellate interneurons in the cerebellum, in Sulfur Amino Acids: Biochemical and Clinical Aspects (K. Kuriyama, R. J. Huxtable, and H. Iwata, eds.), Alan R. Liss, New York, pp. 151–160.Google Scholar
  238. Olney, J. W., 1984. Excitotoxic food additives—relevance of animal studies to human safety, Neurobehav. Toxicol. Teratol. 6:455–462.PubMedGoogle Scholar
  239. Olney, J. W., and Ho, O., 1970. Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine, Nature 227:609–611.PubMedGoogle Scholar
  240. Olney, J. W., Ho, O., Rhee, V., and Schainker, B., 1972. Cysteine-induced brain damage in infant and fetal rodents, Brain Res. 45:309–313.Google Scholar
  241. Orr, H. T., Cohen, A. I., and Lowry, O. H., 1976. The distribution of taurine in the vertebrate retina, J. Neurochem. 265:609–612.Google Scholar
  242. Ottersen, O. P., Madsen, S., Meldrum, B. S., and Storm-Mathisen, J., 1985. Taurine in the hippocampal formation of the Senegalese baboon, Papio papio: An immunocytochemical study with an antiserum against conjugated taurine, Exp. Brain Res. 59:457–462.PubMedGoogle Scholar
  243. Pasantes-Morales, H., Klethi, J., Urban P. F., and Mandel, P., 1972a. The physiological role of taurine in retina: Uptake and effect on electroretinogram (ERG), Physiol. Chem. Phys 4:339–348.Google Scholar
  244. Pasantes-Morales, H., Klethi, J., Ledig, M., and Mandel, P., 1972b. Free amino acids in chicken and rat retina, Brain Res. 41:494–497.PubMedGoogle Scholar
  245. Pasantes-Morales, H., Klethi, J., Urban, P. F., and Mandel, P., 1973. The physiological role of taurine in retina: Uptake and effect on electroretinogram (ERG), Physiol. Chem. Phys. 4:339–348.Google Scholar
  246. Pasantes-Morales, H., Klethi, J., Urban, P. F., and Mandel, P., 1974. The effects of electrical stimulation, light and amino acids on the efflux of 35S-taurine from the retina of domestic fowl, Exp. Brain Res. 19:131–142.Google Scholar
  247. Pasantes-Morales, H., Loriette, C., and Chatagner, F., 1977. Regional and subcellular distribution of taurine synthesizing enzymes in the rat central nervous tissue, Neurochem. Res. 2:671–680.Google Scholar
  248. Pasantes-Morales, H., Salceda, R., and Lopez-Colomé, A. M., 1978. Taurine in normal retina, in Taurine and Neurological Disorders (A. Barbeau and R. J. Huxtable, eds.), Raven Press, New York, pp. 265–279.Google Scholar
  249. Pasantes-Morales, H., Ademe, R. M., and Quesada, O., 1981. Protective effect of taurine on the light-induced disruption of isolated frog rod outer segments, J. Neurosci. Res. 6:337–348.Google Scholar
  250. Pasantes-Morales, H., Quesada, O., Carabez, A., and Huxtable, R. J., 1983. Effects of the taurine transport antagonists, guanidinoethane sulfonate and ß-alanine, on the morphology of rat retina, J. Neurosci. Res. 9:135–143.PubMedGoogle Scholar
  251. Pearson, P. B., 1956. Utilisation du soufre minéral par les animaux supérieurs pour la synthèse de molécules organiques, in Colloque sur la Biochimie du Soufre, Centre National de la Recherche Scientifique, Paris, pp. 153-170.Google Scholar
  252. Peck, E. J., Jr., and Awapara, J., 1967. Formation of taurine and isethionic acid in rat brain, Biochim. Biophys. Acta 141:499–506.PubMedGoogle Scholar
  253. Pedersen, O. Ø., and Karlsen, R. L., 1980. The toxic effect of L-cysteine on the rat retina, Invest. Ophthamol. 19:886–892.Google Scholar
  254. Perry, T. L., and Hansen, S., 1973. Quantification of free amino compounds of rat brain: Identification of hypotaurine, J. Neurochem. 21:1009–1011.PubMedGoogle Scholar
  255. Peterson, M. B., Mead, R. J., and Welty, J. D., 1973. Free amino acids in congestive heart failure, J. Mol. Cell. Cardiol. 5:139–147.PubMedGoogle Scholar
  256. Pourcho, R. G., 1977. Distribution of 35S-taurine in mouse retina after intravitreal and intravascular injection, Exp. Eye Res. 25:119–127.PubMedGoogle Scholar
  257. Prota, G., 1980. Cysteine and glutathione in mammalian pigmentation, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 391–397.Google Scholar
  258. Prota, G., and Thomson, R. H., 1976. Melanin pigmentation in mammals, Endeavour 35:32–38.PubMedGoogle Scholar
  259. Quesada, O., Huxtable, R. J., and Pasantes-Morales, H., 1984. Effect of guanidinoethane sulfonate on taurine uptake by rat retina, J. Neurosci. Res. 11:179–186.PubMedGoogle Scholar
  260. Rabin, B., Nicolosi, R. J., and Hayes, K. C., 1976. Dietary influence on bile acid conjugation in the cat, J. Nutr. 106:1241–1246.PubMedGoogle Scholar
  261. Räiha, N. C. R., Heinonen, K., Rassin, D. K., and Gaull, G. E., 1976. Milk protein quantity and quality in low-birth-weight infants. I. Metabolic responses and effects on growth, Pediatrics 57:659–674.PubMedGoogle Scholar
  262. Rao, D. R., Ennon, A. H., and Thorpe, B., 1966. The occurrence of L-lanthionine in the amino acid pool of insects, Biochem. Biophys. Res. Commun. 22:163–168.Google Scholar
  263. Rassin, D. K., and Sturman, J. A., 1975. Cysteine sulfinic acid decarboxylase in rat brain: Effect of vitamin B6 deficiency on soluble and particulate components, Life Sci. 16:875–882.PubMedGoogle Scholar
  264. Rassin, D. K., Gaull, G. E., Heinonen, K., and Räiha, N. C. R., 1977. Milk protein quantity and quality in low birth weight infants. II. Effects on selected aliphatic amino acids in plasma and urine, Pediatrics 49:307–422.Google Scholar
  265. Rassin, D. K., Sturman, J. A., and Gaull, G. E., 1978. Taurine and other free amino acids in milk of man and other mammals, Early Hum. Dev. 2:1–13.PubMedGoogle Scholar
  266. Read, W. O., and Welty, J. D., 1962. Synthesis of taurine and isethionic acid by dog heart slices, J. Biol. Chem. 237:1521–1522.PubMedGoogle Scholar
  267. Read, W. O., Jaqua, M. J., and Steffen, R. P., 1980. The effect of taurine on contractility and sarcolemmal calcium binding of bullfrog hearts, Exp. Biol. Med. 164:576–582.Google Scholar
  268. Reichelt, K. L., and Edminson, P. D., 1974. Biogenic amine specificity of cortical peptide synthesis in monkey brain, FEBS Lett. 47:185–189.PubMedGoogle Scholar
  269. Reichelt, K. L., and Kvamme, E., 1973. Histamine-dependent formation of N-acetyl-aspartyl peptides in mouse brain, J. Neurochem. 21:849–859.PubMedGoogle Scholar
  270. Rigo, J., and Seneterre, J., 1977. Is taurine essential for the neonate? Biol. Neonate 32:73–76.PubMedGoogle Scholar
  271. Robin, Y., and Marescau, B., 1985. Natural guanidino compounds, in Guanidines: Historical, Biological, Biochemical, and Clinical Aspects of the Naturally Occurring Guanidino Compounds (A. Mori, B. D. Cohen, and A. Lowenthal, eds.), Plenum Press, New York, pp. 383–438.Google Scholar
  272. Rodgers, B., 1978. Feeding in infancy and later ability and attainment: A longitudinal study, Dev. Med. Child. Neurol. 20:421–426.PubMedGoogle Scholar
  273. Romano, A. H., and Nickerson, W. J., 1954. Cystine reductase of pea seeds and yeasts, J. Biol. Chem. 208:409–416.PubMedGoogle Scholar
  274. Sass, N. L., and Martin, W. G., 1972. The synthesis of taurine from Sulfate III. Further evidence for the enzymatic pathway in the chick liver, Proc. Soc. Exp. Biol. Med. 139:755–761.PubMedGoogle Scholar
  275. Scandurra, R., Politi, L., Duprè, S., Moriggi, M., Barra, D., and Cavallini, D., 1977. Comparative biological production of taurine from free cysteine and cysteine bound, Bull. Mol. Biol. Med. 2:172–177.Google Scholar
  276. Scandurra, R., Federici, G., Duprè, S., and Cavallini, D., 1978. Taurine and isethionic acid production in mammals, Bull. Mol. Biol. Med. 3:141–147.Google Scholar
  277. Scandurra, R., Consalvi, V., DeMarco, C., Politi, L., and Cavallini, D., 1980. Lanthionine decarboxylation by animal tissues, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 345–352.Google Scholar
  278. Schaffer, S. W., Severn, A., and Chovan, J., 1978. New chromatographic procedure for measuring isethionic acid levels in tissue, in Taurine and Neurological Disorders (A. Barbeau and R. J. Huxtable, eds.), Raven Press, New York, pp. 25–28.Google Scholar
  279. Schaffer, S. W., Baskin, S. I., and Kocsis, J. J. (eds.), 1981a. The Effects of Taurine on Excitable Tissues, Spectrum Publications, New York.Google Scholar
  280. Schaffer, S. W., Czarnecki, C. M., Cawthray, M., and Chovan, J. P., 1981b. Cardiac taurine levels and sarcolemmal calcium binding activity in furazolidone-induced cardiomyopathy, Comp. Biochem. Physiol. 69C:149–151.Google Scholar
  281. Schmidt, S. Y., and Berson, E. L., 1978. Taurine uptake in isolated retinas of normal rats and rats with hereditary retinal degeneration, Exp. Eye Res. 27:191–198.PubMedGoogle Scholar
  282. Schmidt, S. Y., Berson, E. L., and Hayes, K. C., 1976. Retinal degeneration in cats fed casein. I. Taurine deficiency, Invest. Ophthalmol. 15:47–52.PubMedGoogle Scholar
  283. Schräm, E., and Crokaert, R., 1957. Etude du métabolisme de la taurine chez le rat. Formation de sulfate, Biochim. Biophys. Acta 26:300–308.PubMedGoogle Scholar
  284. Sebring, L., and Huxtable, R. J., 1985. Taurine modulation of calcium binding to cardiac sarcolemma, J. Pharmacol. Exp. Therap. 232:445–451.Google Scholar
  285. Selye, H., and Szabo, S., 1973. Experimental model for production of perforating duodenal ulcers by cysteamine in the rat, Nature 244:458–459.PubMedGoogle Scholar
  286. Sheikh, K., Toskes, P., and Dawson, W., 1981. Taurine deficiency and retinal defects associated with small intestine bacterial overgrowth, Gastroenterology 80:1363.Google Scholar
  287. Shimamoto, G., and Berk, R. S., 1980. Taurine catabolism. III. Evidence for the participation of the glyoxylate cycle, Biochim. Biophys. Acta 632:399–407.PubMedGoogle Scholar
  288. Shinwell, E. D., and Gorodischer, R., 1982. Totally vegetarian diets and infant nutrition, Pediatrics 70:582–586.PubMedGoogle Scholar
  289. Singer, T. P., 1975. Oxidative metabolism of cysteine and cystine in animal tissues, in Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 535–541.Google Scholar
  290. Singer, T. P., and Kearney, E. B., 1954. Pathways of L-cysteine sulfinate metabolism in animal tissues, Biochim. Biophys. Acta 14:570–573.PubMedGoogle Scholar
  291. Singer, T. P., and Kearney, E. B., 1956. Intermediary metabolism of L-cysteinesulfinic acid in animal tissues, Arch. Biochem. Biophys. 61:397–409.PubMedGoogle Scholar
  292. Sörbo, B. 1975. Thiosulfate sulfurtransferase and mercaptopyruvate sulfurtransferase, in Metabolism of Sulfur Compounds (D. M. Greenberg, ed.), Academic Press, New York, pp. 433–456.Google Scholar
  293. Sörbo, B., and Ewetz, L., 1965. Enzymatic oxidation of cysteine to cysteinesulfinate in rat liver, Biochem. Biophys. Res. Commun. 18:359–363. pp. 71-82.Google Scholar
  294. ylase and its substrate specificity, Biochim. Biophys. Acta 23:624-627.Google Scholar
  295. Sörbo, B., Hannestad, U., Lundquist, P., Mértensson, J., and Ohman, S., 1980. Clinical chemistry of mercaptopyruvate and its metabolites, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and V. Zappia, eds.), Plenum Press, New York, pp. 463–470.Google Scholar
  296. Spaeth, D. G., and Schneider, D. L., 1974. Taurine synthesis, concentration and bile-salt conjugation in rat, guinea pig and rabbit, Proc. Soc. Exp. Biol. Med. 147:855–858.PubMedGoogle Scholar
  297. Starr, M. S., 1973. Effect of dark adaptation of the GABA system in retina, Brain. Res. 59:331–338.PubMedGoogle Scholar
  298. States, B., and Segal, S., 1969. Distribution of glutathione-cystine transhydrogenase activity in subcellular fractions of rat intestinal mucosa, Biochem. J. 113:443–444.PubMedGoogle Scholar
  299. Sturman, J. A., 1973. Taurine pool sizes in the rat: Effects of vitamin B-6 deficiency and high-taurine diet, J. Nutr. 103:1566–1580.PubMedGoogle Scholar
  300. Sturman, J. A., 1978. Vitamin B6 and the metabolism of sulfur amino acids, in Human Vitamin B 6 Requirements, National Academy of Sciences, Washington, D.C., pp. 37-60.Google Scholar
  301. Sturman, J. A., 1980. Formation and accumulation of hypotaurine in rat liver regenerating after partial hepatectomy, Life Sci. 26:267–272.PubMedGoogle Scholar
  302. Sturman, J., 1981. Origin of taurine in developing rat brain, Dev. Brain Res. 2; 111–128.Google Scholar
  303. Sturman, J. A., and Fellman, J. H., 1982. Taurine metabolism in the rat: Effect of partial hepatectomy, Int. J. Biochem. 14:1055–1060.PubMedGoogle Scholar
  304. Sturman, J. A., and Hayes, K. C., 1980. The biology of taurine in nutrition and development, Adv. Nutr. 3:231–299.Google Scholar
  305. Sturman, J. A., Hepner, G. W., Hofmann, A. F., and Thomas, P. J., 1975. Metabolism of [35S] taurine in man, J. Nutr. 105:1206–1214.PubMedGoogle Scholar
  306. Sturman, J. A., Rassin, D. K., and Gaull, G. E., 1977a. Taurine in developing rat brain: Transfer of [35S] taurine to pups via the milk, Pediat. Res. 11:28–33.PubMedGoogle Scholar
  307. Sturman, J. A., Rassin, D. K., and Gaull, G. E., 1977b. Taurine in development, Like Sci. 21:1–22.Google Scholar
  308. Sturman, J. A., Rassin, D. K., and Gaull, G. E., 1977c. Taurine in developing rat brain: Maternal-fetal transfer of [35C] taurine and its fate in the neonate, J. Neurochem. 28:31–39.PubMedGoogle Scholar
  309. Sturman, J. A., Wen, G. Y., Wisniewski, H. M., and Neuringer, M. D., 1984. Retinal degeneration in primates raised on a synthetic human infant formula, Int. J. Dev. Neurosci. 2:121–129.Google Scholar
  310. Sturman, J. A., Moretz, R. C., French, J. H., and Wisniewski, H. M., 1985a. Postnatal taurine deficiency in the kitten results in a persistence of the cerebellar external granule cell layer: Correction by taurine feeding, J. Neurosci. Res. 13;521–528.PubMedGoogle Scholar
  311. Sturman, J. A., Moretz, R. C., French, J. H., and Wisniewski, H. M., 1985b. Taurine deficiency in the developing cat: Persistence of the cerebellar external granule cell layer, J. Neurosci. Res. 13:405–416.PubMedGoogle Scholar
  312. Sumizu, K., 1962. Oxidation of hypotaurine in rat liver, Biochem. Biophys. Acta 63:210–212.PubMedGoogle Scholar
  313. Tanaka, H., Toyama, S., Tsukahura, H., and Soda, K., 1974. Transamination of hypotaurine by taurine:α-ketoglutarate aminotransferase, FEBS Lett. 45:111–113.PubMedGoogle Scholar
  314. Taniguchi, T., and Kimura, T., 1974. Role of 3-mercaptopyruvate sulfurtransferase in the formation of the iron-sulfur chromophore of adrenal ferredoxin, Biochim. Biophys. Acta 364:284–295.PubMedGoogle Scholar
  315. Thoai, N. V., and Robin, Y., 1954. Métabolisme des dérivés guanidylés. II. Isolement de la guanidotaurine (taurocyamine) et de l’acide guanidoacétique (glycocyamine) des vers marins, Biochim. Biophys. Acta 59:533–536.Google Scholar
  316. Thomas, E. L., Grisham, M. B., Melton, D. F., and Jefferson, M. M., 1985. Evidence for a role of taurine in the in vitro oxidative toxicity of neutrophils toward erythrocytes, J. Biol. Chem. 260:3321–3329.PubMedGoogle Scholar
  317. Thurston, J. H., Hauhart, R. E., and Dirgo, J. A., 1980. Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance, Life Sci. 26:1561–1568.PubMedGoogle Scholar
  318. Thurston, J. H., Hauhart, R. E., and Naccarato, E. F., 1981. Taurine: possible role in osmotic regulation of mammalian heart, Science 214:1373–1374.PubMedGoogle Scholar
  319. Toyama, S., Misono, H., and Soda, K., 1978. Properties of taurine:α-ketoglutarate aminotransferase of Achromobacter superficialis, Biochim. Biophys. Acta 523:75–81.PubMedGoogle Scholar
  320. Trudinger, P. A., and Loughlin, R. E., 1981. Metabolism of simple sulfur compounds, in Comprehensive Biochemistry, Vol. 19A (A. Neubergerand L. L. M. van Deenan, eds.), Elsevier, Amsterdam, pp. 165–235.Google Scholar
  321. Urban, P. F., Dreyfus, H., and Mandel, P., 1976. Influence of various amino acids on the bioelectric response to light stimulation of a superfused frog retina, Life Sci. 18;473–480.PubMedGoogle Scholar
  322. Urquhart, N., Perry, T. L., Hansen, S., and Kennedy, J., 1974. Passage of taurine into mammalian brain, J. Neurochem. 22:871–872.PubMedGoogle Scholar
  323. van Caneghem, P., LeComte, J., Bacq, Z. M., and Beaumariage, M. L., 1970. Several pharmacologic and biochemical aspects of cysteamine-and cystamine-induced shock, in Advances in Experimental Medicine and Biology (A. Bertelli and N. Back, eds.), Plenum Press, New York, pp. 171–187.Google Scholar
  324. Vessey, D. A., 1978. The biochemical basis for the conjugation of bile acids with either glycine or taurine, Biochem. J. 174:621–626.PubMedGoogle Scholar
  325. Wainer, A., 1964. The production of sulfate from cysteine without the formation of free cysteine sulfinic acid, Biochem. Biophys. Res. Commun. 16; 141–144.PubMedGoogle Scholar
  326. Wainer, A., 1965. The production of cysteine sulfinic acid from cysteine in vitro, Biochim. Biophys. Acta 104:405–412.PubMedGoogle Scholar
  327. Welty, J. D., Read, W. O., and Shaw, E. H., 1962. Isolation of 2-hydroxyethane sulfonic acid (isethionic acid) from dog heart, J. Biol. Chem. 237:1160–1161.PubMedGoogle Scholar
  328. Welty, J. D., McBroom, M. J., Appelt, A. W., Peterson, M. B., and Read, W. O., 1976. Effect of taurine on heart and brain electrolyte imbalances, in Taurine (R. J. Huxtable and A. Barbeau, eds.), Raven Press, New York, pp. 155–163.Google Scholar
  329. Wen, G. Y., Sturman, J. A., Wisniewski, H. M., Lidsky, A. A., Cornwell, A. C., and Hayes K. C., 1979. Tapetum disorganization in taurine-depleted cats, Invest. Ophthalmol. Vis. Sci. 18:1200–1206.PubMedGoogle Scholar
  330. Wendell, P. L., 1968. Distribution of glutathione reductase and detection of glutathione-cystine transhydrogenase in rat tissues, Biochim. Biophys. Acta 159:179–181.PubMedGoogle Scholar
  331. Westley, J., 1980. Rhodanese and the sulfane pool, in Enzymatic Basis of Detoxication, Vol. II (W. B. Jakoby, ed.), Academic Press, New York, pp. 245–262.Google Scholar
  332. Westley, J., 1981. Cyanide and sulfane sulfur, in Cyanide in Biology (B. Vennesland, E. E. Conn, C. J. Knowles, J. Westley, and F. Wissing, eds.), Academic Press, London, pp. 61–76.Google Scholar
  333. Westley, J., Adler, H., Westley, L., and Nishida, C., 1983. The sulfurtransferases, Fund. Appl. Toxicol. 3:377–382.Google Scholar
  334. Wickberg, B., 1956. Isolation of N-(D-2,3-dihydroxy-n-propyl) taurine from Gigartina leptorhynchos, Acta Chem. Scand. 10;1097–1099.Google Scholar
  335. Wickberg, B., 1957. Isolation of 2-L-amino-3-hydroxy-l-propane sulphinic acid from Polysiphonia fastigiata, Acta Chem. Scand. 11:506–511.Google Scholar
  336. Wu, J. Y., 1984. GABA and taurine enzymes in mammalian brain, Current Topics Cell. Reg. 24:114–128.Google Scholar
  337. Wu, J. Y., Chen, M. S., and Huang, W. M., 1978. Purification and immunochemical studies of cysteic acid decarboxylase and glutamate decarboxylase from bovine brain, Neurosci. Abstr. 4:454.Google Scholar
  338. Wu, J. Y., Moss, L. G., and Chen, M. S., 1979. Tissue and regional distribution of cysteic acid decarboxylase, Neurochem. Res. 4:201–212.PubMedGoogle Scholar
  339. Yamaguchi, K., 1980. Cysteine dioxygenase of rat liver: Some properties and its significance on cysteine metabolism of rat, in Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (D. Cavallini, G. E. Gaull, and B. Zappia, eds.), Plenum Press, New York, pp. 175–186.Google Scholar
  340. Yamaguchi, K., Sakakibara, S., Asamizu, J., and Ueda, I., 1973. I. Induction and activation of cysteine oxidation in rat liver. II. The measurement of cysteine metabolism in vivo and the activation of in vivo activity of cysteine oxidase, Biochim. Biophys. Acta 297:48–59.PubMedGoogle Scholar
  341. Yamanishi, T., and Tuboi, S., 1981. The mechanism of the L-cysteine cleavage reaction catalyzed by rat liver γ-cystathionase, J. Biochem. (Tokyo) 89:1913–1921.Google Scholar
  342. Yarbrough, G. G., Singh, D. K., and Taylor, D. A., 1981. Neuropharmacological characterization of a taurine antagonist, J. Pharmacol. Exp. Therap. 219:604–613.Google Scholar
  343. Yates, R. A., and Keen, P., 1976. The distribution of free amino acids in subdivisions of rat and frog retinae obtained by a new technique, Brain Res. 107:117–126.PubMedGoogle Scholar
  344. Zmora, E., Gorodischer, R., and Bar-Ziv, J., 1979. Multiple nutritional deficiencies in infants from a strict vegetarian community, Am. J. Dis. Child 133:141–144.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ryan J. Huxtable
    • 1
  1. 1.University of Arizona Health Sciences CenterTucsonUSA

Personalised recommendations