Advertisement

Animal Nickel Metabolism

  • Robert P. Hausinger
Part of the Biochemistry of the Elements book series (BOTE, volume 12)

Abstract

All animals, including humans, are constantly exposed to nickel ion and particulate nickel compounds through the food we eat and the air we breath. A small portion of the ingested nickel is absorbed by cells lining the small intestine, and additional small amounts of nickel are assimilated by pulmonary cells after inhalation. The absorbed nickel ion is systemically transported to all tissues by proteinaceous and low-molecular-weight nickel-binding components in the serum. Although steady-state levels of nickel are fairly uniform in various tissues of the body, when radiolabeled nickel ion is administered to an animal, the metal ion is rapidly accumulated in the kidney. The kidney and urinary tract serve as the major route of elimination for absorbed nickel ion, while nonabsorbed nickel compounds are eliminated in the feces. Cellular internalization of nickel ion can occur by action of metal ion transport proteins, whereas lipophilic nickel complexes appear capable of diffusion into cells, and certain cells can phagocytize nickel particles. Although it remains obscure whether nickel is an essential or even beneficial trace metal ion in humans, low concentrations of nickel do appear to facilitate optimal growth of several animals. The functional roles for nickel in animals, however, are only poorly understood. In contrast, the toxic, carcinogenic, and other harmful effects of certain nickel species have been well documented in various systems. This chapter will describe the metabolic flux of nickel ion in animals, examine the evidence that nickel is essential for animal growth, and detail the harmful effects of nickel compounds on animal cells.

Keywords

Nickel Concentration Nickel Chloride Nickel Compound Nickel Carbonyl Human Kidney Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbracchio, M. P., Heck, J. D., and Costa, M., 1982. The phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge, Carcinogenesis 3:175–180.Google Scholar
  2. Abdulwajid, A. W., and Sarkar, B., 1983. Nickel-sequestering renal glycoprotein, Proc. Nail. Acad. Sci. USA 80:4509–4512.Google Scholar
  3. Anke, M., Grün, M., and Kronemann, H., 1980. Distribution of nickel in nickel-deficient goats and their offspring, in Nickel Toxicology (S. S. Brown and F. W. Sunderman, Jr., eds.), Academic Press, New York, pp. 69–72.Google Scholar
  4. Anke, M., Grün, M., Groppel, B., and Kronemann, H., 1983. Nutritional requirements of nickel, in Biological Aspects of Metals and Metal-Related Diseases (B. Sarkar, ed.), Raven Press, New York, pp. 89–105.Google Scholar
  5. Anke, M., Groppel, B., Kronemann, H., and Grün, M., 1984. Nickel-an essential element, in Nickel in the Human Environment (F. W. Sunderman, Jr. et al., eds.), Oxford University Press, New York, pp. 339–365.Google Scholar
  6. Arrouijal, F. Z., Hildebrand, H. F., Vophi, H., and Marzin, D., 1990. Genotoxic activity of nickel subsulfide a-Ni3S2, Mutagenesis 5:583–589.Google Scholar
  7. Athar, M., Hasan, S. K., and Srivastava, R. C., 1987. Evidence for the involvement of hydroxyl radicals in nickel mediated enhancement of lipid peroxidation: Implications for nickel carcinogenesis, Biochem. Biophys. Res. Commun. 147:1276–1281.Google Scholar
  8. Barnes, D. J., and Crossland, C. J., 1976. Urease activity in the staghorn coral, Comp. Biochem. Physiol. 55B:371–376.Google Scholar
  9. Basrur, P. K., and Gilman, J. P. W., 1967. Morphological and synthetic response of normal and tumor muscle cultures to nickel subsulfide, Cancer Res. 27:1168–1177.Google Scholar
  10. Beck, B. L., Henjum, D. C., Antonijczuk, K., Zaharia, O., Kona, G., Ozols, J., Hopfer, S. M., Barber, A. M., and Sunderman, F. W., Jr., 1992. pNiXa,a Nie+-binding protein in Xenopus oocytes and embryos, shows identity to Ep45, an estrogen-regulated hepatic serpin, Res. Commun. Chem. Pathol. Pharmacol. 77:3–16.Google Scholar
  11. Benson, J. M., Burt, D. G., Cheng, Y. S., Hahn, F. F., Haley, P. J., Henderson, R. F., Hobbs, C. H., Pickrell, J. A., and Dunnick, J. K., 1989. Biochemical responses of rat and mouse lung to inhaled nickel compounds, Toxicology 57:255–266.Google Scholar
  12. Bible, K. C., Buytendorp, M., Zierath, P. D., and Rinehart, K. L., 1988. Tunichlorin: A nickel chlorin isolated from the Caribbean tunicate Trididemnum solidum, Proc. Natl. Acad. Sci. USA 85:4582–4586.Google Scholar
  13. Biggart, N. W., and Costa, M., 1986. Assessment of the uptake and mutagenicity of nickel chloride in Salmonella tester strains, Mutat. Res. 175:209–215.Google Scholar
  14. Biggart, N. W., Gallick, G. E., and Murphy, E. C., Jr., 1987. Nickel-induced heritable alterations in retroviral transforming gene expression, J. Virol. 61:2378–2388.Google Scholar
  15. Bourtayre, P., Pizzorni, L., Liquier, J., Taboumy, J., Taillandier, E., and Labarre, J. F., 1984. Z-form induction in DNA by carcinogenic nickel compounds: An optical spectroscopic study, in Nickel and the Human Environment (F. W. Sunderman, Jr. et al., eds.), Oxford University Press, New York, pp. 227–234.Google Scholar
  16. Brommundt, G., and Kavaler, F., 1987. La’, Mn’, and Ni’ effects on Ca“ pump and on Na+Ca2+ exchange in bullfrog ventricle, Am. J. Physiol. 253:C45–051.Google Scholar
  17. Brown, S. S., and Sunderman, F. W., Jr. (eds.), 1980. Nickel Toxicology,Academic Press, New York.Google Scholar
  18. Brown, S. S., and Sunderman, F. W., Jr. (eds.), 1985. Progress in Nickel Toxicology,Blackwell Scientific, Oxford. Campbell, J. A., 1943. Lung tumours in mice and man, Br. Med. J. 1:179–183.Google Scholar
  19. Chen, X., Rokita, S. E., and Burrows, C. J., 1991. DNA modification: Intrinsic selectivity of nickel(II) complexes, J. Am. Chem. Soc. 113:5884–5886.Google Scholar
  20. Chen, X., Burrows, C. J., and Rokita, S. E., 1992. Conformation-specific detection of guanine in DNA: Ends, mismatches, bulges, and loops, J. Am. Chem. Soc. 114:322–325.Google Scholar
  21. Cheng, C. C., Rokita, S. E., and Burrows, C. J., 1993. Nickel(III)-promoted DNA cleavage with ambient oxygen, Angew. Chem. 32:277–278.Google Scholar
  22. Chiocca, S. M., Sterner, D. A., Biggart, N. W., and Murphy, E. C., Jr., 1991. Nickel mutagenesis: Alteration of the MuSVts 110 thermosensitive splicing phenotype by nickel-induced duplication of the 3’ splice site, Mol. Carcinogen. 4:61–71.Google Scholar
  23. Christie, N. T., and Katsifis, S. P., 1990. Nickel carcinogenesis, in Biological Effects of Heavy Metals (E. C. Foulkes, ed.), CRC Press, Boca Raton, Florida.Google Scholar
  24. Christie, N. T., Sen, P., and Costa, M., 1988. Chromosomal alterations in cell lines derived fromGoogle Scholar
  25. mouse rhabdomyosarcomas induced by crystalline nickel sulfide, Biol. Metals 1:43–50. Ciccarelli, R. B., and Wetterhahn, K. E., 1982. Nickel distribution and DNA lesions induced in rat tissues by carcinogenic nickel carbonate, Cancer Res. 42:3544–3549.Google Scholar
  26. Ciccarelli, R. B., and Wetterhahn, K. E., 1984. Molecular basis for the activity of nickel, in Nickel in the Human Environment (F. W. Sunderman, Jr. et al., eds.), Oxford University Press, New York, pp. 201–213.Google Scholar
  27. Ciccarelli, R. B., Hampton, T. H., and Jennette, K. W., 1981. Nickel carbonate induces DNAprotein crosslinks and DNA strand breaks in rat kidney, Cancer Lett. 12:349–354.Google Scholar
  28. Conway, K., and Costa, M., 1989. Nonrandom chromosomal alterations in nickel-transformed Chinese hamster embryo cells, Cancer Res. 49:6032–6038.Google Scholar
  29. Conway, K., Sen, P., and Costa, M., 1986. Antagonistic effect of magnesium chloride on the nickel chloride-induced inhibition of DNA replication in Chinese hamster ovary cells, J. Biochem. Toxicol. l:11–26.Google Scholar
  30. Coogan, T. P., Latta, D. M., Snow, E. T., and Costa, M., 1989. Toxicity and carcinogenicity of nickel compounds, CRC Crit. Rev. Toxicol. 19:341–384.Google Scholar
  31. Cooley, L., Crawford, D. R., and Bishop, S. H., 1976. Urease from the lugworm, Arenicola cristata, Biol. Bull. 151:96–107.Google Scholar
  32. Costa, M., 1991. Molecular mechanisms of nickel carcinogenesis, Annu. Rev. Pharmacol. Toxicol. 31:321–337.Google Scholar
  33. Costa, M., and Mollenhauer, H. M., 1980a. Carcinogenic activity of particulate nickel compounds is proportional to their cellular uptake, Science 209:515–517.Google Scholar
  34. Costa, M., and Mollenhauer, H. H., 1980b. Phagocytosis of nickel subsulfide particles during the early stages of neoplastic transformation in tissue culture, Cancer Res. 40:1688–1694.Google Scholar
  35. Costa, M., Nye, J. S., Sunderman, F. W., Jr., Allpass, P. R., and Gondos, B., 1979. Induction of sarcomas in nude mice by implantation of Syrian hamster fetal cells exposed in vitro to nickel subsulfide, Cancer Res. 39:3591–3597.Google Scholar
  36. Costa, M., Abbracchio, M. P., and Simmons-Hansen, J., 1981. Factors influencing the phagocytosis, neoplastic transformation, and cytotoxicity of particulate nickel compounds in tissue culture systems, Toxicol. Appl. Pharmacol. 60:313–323.Google Scholar
  37. Cotelle, N., Trémolières, E., Bernier, J. L., Catteau, J. P., and Hénichart, J. P., 1992. Redox chemistry of complexes of nickel(II) with some biologically important peptides in the presence of reduced oxygen species: An ESR study, J. Inorg. Biochem. 46:7–15.Google Scholar
  38. D’Alonzo, C. A., and Pell, S., 1963. A study of trace metals in myocardial infarction, Arch. Environ. Health 6:381–385.Google Scholar
  39. Decock-Le Reverend, B., Perly, B., and Sarkar, B., 1987. Isolation and two-dimensional ‘H-NMR of peptide [1–24] of dog serum albumin and studies of its complexation with copper and nickel by NMR and CD spectroscopy, Biochim. Biophys. Acta 912:16–27.Google Scholar
  40. DiPaolo, J. A., and Castro, B. C., 1979. Quantitative studies of in vitro morphological transfor- mation of Syrian hamster cells by inorganic metal salts, Cancer Res. 39:1008–1023.Google Scholar
  41. Diwan, B. A., Kasprzak, K. S., and Rice, J. M., 1992. Transplacental carcinogenic effects of nickel(II) acetate in the renal cortex, renal pelvis and adenohypophysis in F344/NCr rats, Carcinogenesis 13:1351–1357.Google Scholar
  42. Doll, R., 1958. Cancer of the lung and nose in nickel workers, Br. J. Ind. Med. 15:217–223.Google Scholar
  43. Dolovich, J., Evans, S. L., and Nieboer, E., 1984. Occupational asthma from nickel sensitivity. I. Human serum albumin in the antigenic determinant, Br. J. Ind. Med. 41: 51–55.Google Scholar
  44. Donskoy, E., Donskoy, M., Forouhar, F., Gillies, C. G., Marzouk, A., Reid, M. C., Zaharia, O., and Sunderman, F. W., Jr., 1986. Hepatic toxicity of nickel chloride in rats, Ann. Clin. Lab. Sci. 16:108–117.Google Scholar
  45. Fishelson, Z., and Müller-Eberhard, H. J., 1982. C3 convertase of human complement: Enhanced formation and stability of the enzyme generated with nickel instead of magnesium, J. Immunol. 129:2603–2607.Google Scholar
  46. Fishelson, Z., Pangburn, M. K., and Müller-Eberhard, H. J., 1983. C3 convertase of the alternate complement pathway. Demonstration of an active, stable C3b,Bb(Ni) complex, J. Biol. Chem. 258:7411–7415.Google Scholar
  47. Foulkes, E. C., and McMullen, D. M., 1986. On the mechanism of nickel absorption in the rat jejunum, Toxicology 38:35–42.Google Scholar
  48. Gitlitz, P. H., Sunderman, F. W., Jr., and Goldblatt, P. J., 1975. Aminoaciduria and proteinuria in rats after a single intraperitoneal injection of Ni(II), Toxicol. Appl. Pharmacol. 34:430440.Google Scholar
  49. Glennon, J. D., and Sarkar, B., 1982a. Nickel(II) transport in human blood serum. Studies of nickel(II) binding to human albumin and to native-sequence peptide, and ternary-complex formation with L-histidine, Biochem. J. 203:15–23.Google Scholar
  50. Glennon, J. D., and Sarkar, B., 1982b. The non-specificity of dog serum albumin and the N-terminal model peptide glycylglycyl-L-tyrosine N-methylamide for nickel is due to the lack of histidine in the third position, Biochem. J. 203:25–31.Google Scholar
  51. Hacques, M. F., and Marion, C., 1986. DNA polymorphism: Spectroscopic and electro-optical characterizations of Z-DNA and other types of left-handed helical structures induced by Ni’, Biopolymers 25:2281–2293.Google Scholar
  52. Halliwell, B., and Gutteridge, J. M. C., 1984. Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219:1–14.Google Scholar
  53. Hansen, K., and Stern, R. M., 1983. In vitro toxicity and transformation potency of nickel compounds, Environ. Health Perspect. 51:223–226.Google Scholar
  54. Hasan, H., and Ali, S. F., 1981. Effects of thallium, nickel, and cobalt administration on the lipid peroxidation in different regions of the rat brain, Toxicol. Appl. Pharmacol. 57:8–13.Google Scholar
  55. Haugen, A., Ryberg, D., Hansteen, I.-L., and Amstad, P., 1990. Neoplastic transformation of a human kidney epithelial cell line transfected with v-Ha-ras oncogene, Int. J. Cancer 45:572577.Google Scholar
  56. Heck, J. D., and Costa, M., 1983. Influence of surface charge and dissolution on the selective phagocytosis of potentially carcinogenic particulate metal compounds, Cancer Res. 43:56525656.Google Scholar
  57. Higinbotham, K. G., Rice, J. M., Diwan, B. A., Kasprzak, K. S., Reed, C. D., and Perantoni, A. O., 1992. GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA, Cancer Res. 52:4747–4751.Google Scholar
  58. Hildebrand, H. F., Decaestecker, A.-M., Arrouijal, F.-Z., and Marinez, R., 1991. In vitro and in vivo uptake of nickel sulfides by rat lymphocytes, Arch. Toxicol. 65:324–329.Google Scholar
  59. Himmelhoch, S. R., Sober, H. A., Valle, B. L., Peterson, E. A., and Fuwa, K., 1966. Spectrographic and chromatographic resolution of metalloproteins in human serum, Biochemistry 5:25232532.Google Scholar
  60. Holst, M., and Nordlind, K., 1988. Phosphorylation of nuclear proteins of peripheral blood T lymphocytes activated by nickel sulfate and mercuric chloride, Int. Arch. Allergy Appl. Immunol. 85:337–340.Google Scholar
  61. Hopfer, S. M., Plowman, M. C., Sweeney, K. R., Bantle, J. A., and Sunderman, F. W., Jr., 1991. Teratogenicity of Ni’ in Xenopus laevis,assayed by the FETAX procedure, Biol. Trace Elem. Res. 29:203–216.Google Scholar
  62. Inoue, S., and Kawanishi, S., 1989. ESR evidence for superoxide, hydroxyl radicals and singlet oxygen produced from hydrogen peroxide and nickel(II) complex of glycylglycyl-L-histidine, Biochem. Biophys. Res. Commun. 159:445–451.Google Scholar
  63. Janknecht, R., Sander, C., and Pongs, 0., 1991. (HX)„ repeats: A pH-controlled protein-protein interaction motif of eukaryotic transcription factors? FEBS Lett. 295:1–2.Google Scholar
  64. Jones, D. C., May, P. M., and Williams, D. R., 1980. Computer simulation models of lowmolecular-weight nickel(II) complexes and therapeuticals in vivo, in Nickel Toxicology (S. S. Brown and F. W. Sunderman, Jr., eds.), Academic Press, New York, pp. 73–80.Google Scholar
  65. Joshi, R. R., and Ganesh, K. N., 1992. Specific cleavage of DNA at CG sites by Co(III) and Ni(II) desferal complexes, FEBS Lett. 313: 303–306.Google Scholar
  66. Kapsenberg, M. L., Wierenga, E. A., Stiekema, F. E. M., Tiggelman, A. M. B. C., and Bos, J. D., 1992. Thl lymphokine production profiles of nickel-specific CD4+ T-lymphocyte clones from nickel contact allergic and non-allergic individuals, J. Invest. Dermatol. 98:59–63.Google Scholar
  67. Kasprzak, K. S., 1991. The role of oxidative damage in metal carcinogenesis, Chem. Res. Toxicol. 4:604–615.Google Scholar
  68. Kasprzak, K. S., and Bare, R. M., 1989. In vitro polymerization of histones by carcinogenic nickel compounds, Carcinogenesis 10:621–624.Google Scholar
  69. Kasprzak, K. S., and Hernandez, L., 1989. Enhancement of hydroxylation and deglycosylation of 2’-deoxyguanosine by carcinogenic nickel compounds, Cancer Res. 49:5964–5968.Google Scholar
  70. Kasprzak, K. S., Gabryel, P., and Jarczewska, K., 1983. Carcinogenicity of nickel(II)hydroxides and nickel(II)sulfate in Wistar rats and its relation to the in vitro dissolution rates, Carcinogenesis 4:275–279.Google Scholar
  71. Kasprzak, K. S., Diwan, B. A., Konishi, N., Misra, M., and Rice, J. M., 1990. Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats, Carcinogenesis 11:647–652.Google Scholar
  72. Kasprzak, K. S., Diwan, B. A., Rice, J. M., Misra, M., Riggs, C. W., Olinski, R., and Dizdaroglu, M., 1992a. Nickel(II)-mediated oxidative DNA base damage in renal and hepatic chromatin of pregnant rats and their fetuses. Possible relevance to carcinogenesis, Chem. Res. Toxicol. 5:809–815.Google Scholar
  73. Kasprzak, K. S., North, S. L., and Hernandez, L., 1992b. Reversal by nickel(II) of inhibitory effects of some scavengers of active oxygen species upon hydroxylation of 2’-deoxyguanosine in vitro, Chem.-Biol. Interact. 84:11–19.Google Scholar
  74. Kawanishi, S., Inoue, S., and Yamamoto, K., 1989. Site-specific DNA damage induced by nickel(II) ion in the presence of hydrogen peroxide, Carcinogenesis 10:2231–2235.Google Scholar
  75. King, M. M., and Huang, C. Y., 1983. Activation of calcineurin by nickel ions, Biochem. Biophys. Res. Commun. 114:955–961.Google Scholar
  76. Kirchgessner, M., and Schnegg, 1976. Malate dehydrogenase and glucose-6-phosphatase activity in livers of Ni-deficient rats, Bioinorg. Chem. 6:155–161.Google Scholar
  77. Kirchgessner, M., and Schnegg, A., 1980. Biochemical and physiological effects of nickel deficiency, in Nickel in the Environment (J. O. Nriagu, ed.), John Wiley & Sons, New York, pp. 635652.Google Scholar
  78. Klein, C. B., Conway, K., Wang, X. W., Bhamra, R. K., Lin, X., Cohen, M. D., Annab, L., Barrett, J. C., and Costa, M., 199la. Senescence of nickel-transformed cells by an X chromosome: Possible epigenetic control, Science 251:796–799.Google Scholar
  79. Klein, C. B., Frenkel, K., and Costa, M., 1991b. The role of oxidative processes in metal carcinogenesis, Chem. Res. Toxicol. 4:592–604.Google Scholar
  80. Knight, J. A., Plowman, M. R., Hopfer, S. M., and Sunderman, F. W., Jr., 1991. Pathological reactions in lung, liver, thymus, and spleen of rats after subacute parenteral administration of nickel sulfate, Ann. Clin. Lab. Sci. 21:275–283.Google Scholar
  81. Krizek, B. A., and Berg, J. M., 1992. Complexes of zinc finger proteins with Ni’ and Fe’, Inorg. Chem. 31:2984–2986.Google Scholar
  82. Kuehn, K., Frase, C. B., and Sunderman, F. W., Jr., 1982. Phagocytosis of particulate nickel compounds by rat peritoneal macrophages in vitro, Carcinogenesis 3:321–326.Google Scholar
  83. Langârd, S., and Stern, R. M., 1984. Nickel in welding fumes-a cancer hazard to welders? A review of epidemiological studies on cancer in welders, in Nickel in the Human Environment (F. W. Sunderman, Jr. et al., eds.), Oxford University Press, New York, pp. 95–103.Google Scholar
  84. Laurie, S. H., and Pratt, D. E., 1986. A spectroscopic study of nickel(II)-bovine serum albumin binding and reactivity, J. Inorg. Biochem. 28:431–439.Google Scholar
  85. Laussac, J.-P., and Sarkar, B., 1984. Characterization of the copper(II)- and nickel(II)-transport site of human serum albumin. Studies of copper(II) and nickel(II) binding to peptide 1–24 of human serum albumin by’3C and ‘H NMR spectroscopy, Biochemistry 23: 2832–2838.Google Scholar
  86. Lechner, J. F., Tokiwan, T., McClendon, I. A., and Haugen, A., 1984. Effects of nickel sulfate on growth and differentiation of normal human bronchial epithelial cells, Carcinogenesis 5: 1697–1703.Google Scholar
  87. Lee, J. E., Ciccarelli, R. B., and Jennette, K. W., 1982. Solubilization of the carcinogen nickel subsulfide and its interaction with deoxyribonucleic acid and protein, Biochemistry 21:771778.Google Scholar
  88. Leonard, A., and Jacquet, P., 1984. Embryotoxicity and genotoxicity of nickel, in Nickel in the Human Environment (F. W. Sunderman, Jr. et al., eds.), Oxford University Press, New York, pp. 277–291.Google Scholar
  89. Lin, S.-M., Hopfer, S. M., Brennan, S. M., and Sunderman, F. W., Jr., 1989. Protein blotting method for detection of nickel-binding proteins, Res. Commun. Chem. Pathol. Pharmacol. 65:275–288.Google Scholar
  90. Lin, X., Sugyama, M., and Costa, M., 1991. Differences in the effect of vitamin E on nickel sulfide or nickel chloride-induced chromosomal aberrations in mammalian cells, Mutat. Res. 260:159–164.Google Scholar
  91. Lin, X., Zhuang, Z., and Costa, M., 1992. Analysis of residual amino acid-DNA crosslinks induced in intact cells by nickel and chromium compounds, Carcinogenesis 13:1763–1768.Google Scholar
  92. Liquier, J., Bourtayre, P., Pizzorni, L., Sournies, F., Labarre, J. F., and Taillandier, E., 1984. Spectroscopic studies of conformational transitions in double stranded DNAs in the presence of carcinogenic nickel compounds and antitumoral drug (SOAZ), Anticancer Res. 4:41–44.Google Scholar
  93. Lu, C. C., Matsumoto, M., and Iijima, S., 1979. Teratogenic effects of nickel chloride on embryonic mice and its transfer to embryonic mice, Teratology 19:137–142.Google Scholar
  94. Lucassen, M., and Sarkar, B., 1979. Nickel(II)-binding constituents of human blood serum, J. Toxicol. Environ. Health 5:897–905.Google Scholar
  95. Lumb, G., and Sunderman, F. W., Jr., 1988. The mechanism of malignant tumor induction by nickel subsulfide, Ann. Clin. Lab. Sci. 18:353–366.Google Scholar
  96. Luo, S.-Q., Plowman, M. C., Hopfer, S. M., and Sunderman, F. W., Jr., 1993. Mgt’-deprivation enhances and Mgt+-supplementation diminishes the embryotoxic and teratogenic effects of Ni’, Co’, Zn’, and Cdz’ for frog embryos in the FETAX assay, Ann. Clin. Lab. Sci. 23: 121–129.Google Scholar
  97. Mack, D. P., and Dervan, P. B., 1990. Nickel-mediated sequence specific oxidative cleavage of DNA by a designed metalloprotein, J. Am. Chem. Soc. 112:4604–4606.Google Scholar
  98. Maehle, L., Metcalf, R. A., Ryberg, D., Bennett, W. P., Harris, C. C., and Haugen, A., 1992. Altered p53 gene structure and expression in human epithelial cells after exposure to nickel, Cancer Res. 52:218–221.Google Scholar
  99. Makowski, G. S., and Sunderman, F. W., Jr., 1992. The interactions of zinc, nickel, and cadmium with Xenopus transcription factor IIIA, assessed by equilibrium dialysis, J. Inorg. Biochem. 48:107–119.Google Scholar
  100. Makowski, G. S., Lin, S. M., Brennan, S. M., Smialowitz, H. M., Hopfer, S. M., and Sunderman, F. W., Jr., 1991. Detection of two Zn-finger proteins of Xenopus laevis,TFIIIA, and p43, by probing Western blots of ovary cytosol with 65Zn2+ 63Ni2+, or109Cd2+, Biol. Trace Elem. Res. 29:93–109.Google Scholar
  101. Mas, A., Holt, D., and Webb, M., 1985. The acute toxicity and teratogenicity of nickel in pregnant rats, Toxicology 35:47–57.Google Scholar
  102. McDonald, J. A., Vorhaben, J. E., and Campbell, J. W., 1980. Invertebrate urease: Purification and properties of the enzyme from a land snail, Otala lactea, Comp. Biochem. Physiol. 66B: 223–231.Google Scholar
  103. McNeeley, M. D., Sunderman, W. F., Jr., Nechay, M. W., and Levine, H., 1971. Abnormal concentrations of nickel in serum in cases of myocardial infarction, stroke, burns, hepatic cirrhosis, and uremia, Clin. Chem. 17:1123–1128.Google Scholar
  104. Menné, T., 1992. Nickel contact hypersensitivity, in Nickel and Human Health: Current Perspectives (E. Nieboer and J. O. Nriagu, eds.), John Wiley & Sons, New York, pp. 193–200.Google Scholar
  105. Menon, C. R., and Nieboer, E., 1986. Uptake of nickel(II) by human peripheral mononuclear leukocytes, J. Inorg. Biochem. 28:217–225.Google Scholar
  106. Misra, M., Olinski, R., Dizdaroglu, M., and Kasprzak, K. S., 1993. Enhancement by L-histidine of nickel(II)-induced DNA-protein cross-linking and oxidative DNA base damage in the rat kidney, Chem. Res. Toxicol. 6:33–37.Google Scholar
  107. Morgan, W. T., 1981. Interactions of histidine-rich glycoprotein of serum with metals, Biochemistry 20:1054–1061.Google Scholar
  108. Muller, J. G., Chen, X., Dadiz, A. C., Rokita, S. E., and Burrows, C. H., 1992. Ligand effects associated with the intrinsic selectivity of DNA oxidation promoted by nickel(II) macrocyclic complexes, J. Am. Chem. Soc. 114:6407–6411.Google Scholar
  109. Muller, J. G., Chen, X., Dadiz, A. C., Rokita, S. E., and Burrows, C. H., 1993. Macrocyclic nickel complexes in DNA recognition and oxidation, Pure Appl. Chem. 65:545–550.Google Scholar
  110. National Research Council, 1975. Nickel, National Academy of Sciences, Washington, D.C. Nicklin, S., and Nielsen, G. T., 1992. Nickel and the immune system: Current concepts, in Nickel and Human Health: Current Perspectives (E. Nieboer and J. O. Nriagu, eds.), John Wiley & Sons, New York, pp. 239–259.Google Scholar
  111. Nieboer, E., and Nriagu, J. O. (eds.), 1992. Nickel and Human Health: Current Perspectives,John Wiley & Sons, New York.Google Scholar
  112. Nieboer, E., Stafford, A. R., Evans, S. L., and Dolovich, J., 1984a. Cellular binding and/or uptake of nickel(II) ions, in Nickel in the Human Environment (F. W. Sunderman, Jr. et al., eds.), Oxford University Press, New York, pp. 321–331.Google Scholar
  113. Nieboer, E., Maxwell, R. 1., and Stafford, A. R., 1984b. Chemical and biological reactivity of insoluble nickel compounds and the bioinorganic chemistry of nickel, in Nickel in the Human Environment (F. W. Sunderman, Jr. et al., eds.), Oxford University Press, New York, pp. 321–331.Google Scholar
  114. Nieboer, E., Tom, R. T., and Sanford, W. E., 1988a. Nickel metabolism in man and animals, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 91–121.Google Scholar
  115. Nieboer, E., Rossetto, F. E., and Menon, C. R., 1988b. Toxicology of nickel compounds, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 359–402.Google Scholar
  116. Nieboer, E., Sanford, W. E., and Stace, B. C., 1992. Absorption, distribution, and excretion of nickel, in Nickel and Human Health: Current Perspectives (E. Nieboer and J. O. Nriagu, eds.), John Wiley & Sons, New York, pp. 49–68.Google Scholar
  117. Nielsen, F. H., 1971. Studies on the essentiality of nickel, in Newer Trace Elements in Nutrition (W. Mertz and W. E. Cornatzer, eds.), Marcel Dekker, New York, pp. 215–253.Google Scholar
  118. Nielsen, F. H., 1984. Nickel, in Biochemistry of the Essential Ultratrace Elements (E. Frieden, ed.), Plenum Press, New York, pp. 293–308.Google Scholar
  119. Nielsen, F. H., 1986. Nickel, in Trace Elements in Human and Animal Nutrition, 5th ed. ( W. Mertz, ed.), Academic Press, New York, pp. 245–273.Google Scholar
  120. Nielsen, F. H., 1991. Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: Current knowledge and speculation, FASEB J. 5:2661–2667.Google Scholar
  121. Nielsen, F. H., and 011erich, D. A., 1974. Nickel: A new essential trace element, Fed. Proc. 33: 1767–1772.Google Scholar
  122. Nielsen, F. H., and Sauberlich, H. E., 1970. Evidence of a possible requirement for nickel by the chick, Proc. Soc. Exp. Biol. Med. 134:845–849.Google Scholar
  123. Nielsen, F. H., Myron, D. R., Givand, S. H., and 011erich, D. A., 1975a. Nickel deficiency and nickel-rhodium interaction in chicks, J. Nutr. 105:1607–1619.Google Scholar
  124. Nielsen, F. H., Myron, D. R., Givand, S. H., Zimmerman, T. J., and 011erich, D. A., 1975b. Nickel deficiency in rats, J. Nutr. 105:1620–1630.Google Scholar
  125. Nielsen, F. H., Shuler, T. R., McLeod, T. G., and Zimmerman, T. J., 1984. Nickel influences iron metabolism through physiologic, pharmacologic and toxicologic mechanisms in the rat, J. Nutr. 114:1280–1288.Google Scholar
  126. Nishimura, M., and Umeda, M., 1979. Induction of chromosomal aberrations in cultured mammalian cells by nickel compounds, Mutat. Res. 68:337–349.Google Scholar
  127. Nomoto, S., and Sunderman, F. W., Jr., 1988. Presence of nickel in alpha-2-macroglobulin isolated from human serum by high performance liquid chromatography, Ann. Clin. Lab. Sci. 18: 78–84.Google Scholar
  128. Nomoto, S., McNeeley, M. D., and Sunderman, F. W., Jr., 1971. Isolation of a nickel a2macroglobulin from rabbit serum, Biochemistry 10:1647–1651. Google Scholar
  129. Okamoto, M., 1987. Induction of ocular tumor by nickel subsulfide in the Japanese common newt, Cynops pyrrhogaster, Cancer Res. 47:5213–5217.Google Scholar
  130. Onkelinx, C., and Sunderman, F. W., Jr., 1980. Modeling of nickel metabolism, in Nickel in the Environment (J. O. Nriagu, ed.), John Wiley & Sons, New York, pp. 525–545.Google Scholar
  131. Parker, K., and Sunderman, F. W., Jr., 1974. Distribution of 63Ni in rabbit tissues following intravenous injection of 63NiC12, Res. Commun. Chem. Pathol. Pharmacol. 7:755–762.Google Scholar
  132. Patierno, S. R., and Costa, M., 1985. DNA-protein cross-links induced by nickel compounds in intact cultured mammalian cells, Chem.-Biot. Interact. 55:75–91.Google Scholar
  133. Pienta, R. J., Poley, J. A., and Lebherz, W. B., III, 1977. Morphological transformation of early passage golden Syrian hamster embryo cells derived from cryopreserved primary cultures as a reliable in vitro bioassay for identifying diverse carcinogens, Int. J. Cancer 19:642–655.Google Scholar
  134. Predki, P. F., Whitfield, D. M., and Sarkar, B., 1992a. Characterization and cellular distribution of acidic peptide and oligosaccharide metal-binding compounds from kidneys, Biochem. J. 281:835–841.Google Scholar
  135. Predki, P. F., Harford, C., Brar, P., and Sarkar, B., 1992b. Further characterization of the N-terminal copper(II)- and nickel(II)-binding motif of proteins. Studies of metal binding to chicken serum albumin and the native sequence peptide, Biochem. J. 287:211–215.Google Scholar
  136. Pullarkat, R. K., Sbaschnig-Agler, M., and Reha, H., 1981. Biosynthesis of phosphatidylserine in rat brain microsomes, Biochim. Biophys. Acta 664:117–123.Google Scholar
  137. Rayner-Canham, G. W., Van Roode, M., and Burke, J., 1985. Nickel and cobalt concentrations in the tunicate Halocynthia pyriformis: Evidence for essentiality of the two metals, Inorg. Chim. Acta 106:L37–L38.Google Scholar
  138. Rezuke, W. N., Knight, J. A., and Sunderman, F. W., Jr., 1987. Reference values for nickel concentrations in human tissues and bile, Am. J. Ind. Med. 11:419–426.Google Scholar
  139. Robison, S. H. Cantoni, O., and Costa, M., 1984. Analysis of metal-induced DNA lesions and DNA-repair replication in mammalian cells, Mutat. Res. 131:173–181.Google Scholar
  140. Romani, A., and Scarpa, A., 1992. Regulation of cell magnesium, Arch. Biochem. Biophys. 298: 1–12.Google Scholar
  141. Sadler, T. W., 1980. Effects of maternal diabetes on early embryogenesis. I. The teratogenic potential of diabetic serum, Teratology 21: 339–347.Google Scholar
  142. Saillenfait, A. M., Sabate, J. P., Langonne, I., and de Ceaurriz, J., 1991. Nickel chloride teratogenesis in cultured rat embryos, Toxicol. In Vitro 5:83–89.Google Scholar
  143. Sarkar, B., 1980. Nickel in blood and kidney, in Nickel Toxicology (S. S. Brown and F. W. Sunderman, eds.), Academic Press, New York, pp. 81–84.Google Scholar
  144. Sarkar, B., 1984. Nickel metabolism, in Nickel in the Human Environment (F. W. Sunderman, Jr. et al., eds.), Oxford University Press, New York, pp. 367–384.Google Scholar
  145. Schaaper, R. M., Koplitz, R. M., Tkeshelashvili, L. K., and Loeb, L. A., 1987. Metal-induced lethality and mutagenesis: Possible role of apurinic intermediates, Mutat. Res. 177:179–188.Google Scholar
  146. Schiffer, R. B., Sunderman, F. W., Jr., Baggs, R., and Moynihan, J. A., 1991. The effects of exposure to dietary nickel and zinc upon humoral and cellular immunity in SJL mice, J. Neuroimm unol. 34:229–239.Google Scholar
  147. Schroeder, H. A., and Mitchner, M., 1971. Toxic effects of trace elements on the reproduction of mice and rats, Arch. Environ. Health 23:102–106.Google Scholar
  148. Schroeder, H. A., Balassa, J. J., and Tipton, I. H., 1962. Abnormal trace metals in man-nickel, J. Chronic Dis. 15:51–65.Google Scholar
  149. Sen, P., and Costa, M., 1985. Induction of chromosomal damage in Chinese hamster ovary cells by soluble and particulate nickel compounds: Preferential fragmentation of the heterochromatic long arm of the X-chromosome by carcinogenic crystalline NiS particles, Cancer Res. 45:2320–2325.Google Scholar
  150. Shi, X., Dalal, N. S., and Kasprzak, K. S., 1992. Generation of free radicals from lipid hydro-peroxides by Ni’ in the presence of oligopeptides, Arch. Biochem. Biophys. 299:154–162.Google Scholar
  151. Shi, X., Dalal, N. S., and Kasprzak, K. S., 1993. Generation of free radicals in reactions of Ni(II)thiol complexes with molecular oxygen and model lipid hydroperoxides, J. Inorg. Biochem. 15:211–225.Google Scholar
  152. Shirakawa, T., Kusaka, Y., and Morimoto, K., 1992. Specific IgE antibodies to nickel in workers with known reactivity to cobalt, Clin. Exp. Allergy 22:213–218.Google Scholar
  153. Shirali, P., Decaestecker, A. M., Marez, T., Hildebrand, H. F., Bailly, C., and Martinez, R., 1991. Ni3S2 uptake by lung cells and its interaction with plasma membrane, J. Appl. Toxicol. 11: 279–288.Google Scholar
  154. Silvennoinen-Kassinen, S., Poikonen, K., and Ikäheimo, I., 1991. Characterization of nickel-specific T cell clones, Scand. J. Immunol. 33:429–434.Google Scholar
  155. Simmons, J. E., Jr., 1961. Urease activity in trypanorhynch cestodes, Biol. Bull. 121:535–546.Google Scholar
  156. Sinigaglia, F., Scheidegger, D., Garotta, G., Scheper, R., Pletscher, M., and Lanzaveccgia, A., 1985. Isolation and characterization of Ni-specific T cell clones from patients with Ni-contact dermatitis, J. Immunol. 135:3929–3932.Google Scholar
  157. Sirover, M. A., and Loeb, L. A., 1976. Infidelity of DNA synthesis in vitro: Screening for potential metal mutagens or carcinogens, Science 194:1434–1436.Google Scholar
  158. Smialowicz, R. J., Rogers, R. R., Riddle, M. M., and Stott, G. A., 1984. Immunological effects of nickel: I. Suppression of cellular and humoral immunity, Environ. Res. 33:413–427.Google Scholar
  159. Smialowicz, R. J., Rogers, R. R., Rowe, D. G., Riddle, M. M., and Luebke, R. W., 1987. The effects of nickel on immune function in the rat, Toxicology 44:271–281.Google Scholar
  160. Smith, J. C., and Hackley, B., 1968. Distribution and excretion of nickel-63 administered intravenously to rats, J. Nutr. 95:541–546.Google Scholar
  161. Snow, E. T., 1992. Metal carcinogenesis: Mechanistic implications, Pharmacol. Ther. 53:31–65. Spears, J. W., 1984. Nickel as a “newer trace element” in the nutrition of domestic animals, J. Anim. Sci. 59:823–835.Google Scholar
  162. Spears, J. W., and Hatfield, E. E., 1978. Nickel for ruminants. I. Influence of dietary nickel on ruminai urease activity, J. Anim. Sci. 47:1345–1350.Google Scholar
  163. Spears, J. W., Smith, C. J., and Hatfield, E. E., 1977. Rumen bacterial urease requirement for nickel, J. Dairy Sci. 7:1073–1076.Google Scholar
  164. Spears, J. W., Hatfield, E. E., Forbes, R. M., and Koenig, S. E., 1978. Studies on the role of nickel in the ruminant, J. Nutr. 108:313–320.Google Scholar
  165. Spears, J. W., Hatfield, E. E., and Forbes, R. M., 1979. Nickel for ruminants. II. Influence of dietary nickel on performance and metabolic parameters, J. Anim. Sci. 48:649–657.Google Scholar
  166. Stinson, T. J., Jaw, S., Jeffrey, E. H., and Plewa, M. J., 1992. The relationship between nickel chloride-induced peroxidation and DNA strand breakage in rat liver, Toxicol. Appl. Pharmacol. 117:98–103.Google Scholar
  167. Sunderman, F. W., Jr., 1977. A review of the metabolism and toxicology of nickel, Ann. Clin. Lab. Sci. 7:377–398.Google Scholar
  168. Sunderman, F. W., Jr., 1987. Lipid peroxidation as a mechanism of acute nickel toxicity, Toxicol. Environ. Chem. 15:59–69.Google Scholar
  169. Sunderman, F. W., Jr., 1988. Nickel, in Handbook on Toxicology of Inorganic Compounds (H. G. Siler and H. Sigel, eds.), Marcel Dekker, New York, pp. 454–468.Google Scholar
  170. Sunderman, F. W., Jr., 1989a. Mechanisms of nickel carcinogenesis, Scand. J. Work Environ. Health 15:1–12.Google Scholar
  171. Sunderman, F. W., 1989b. A pilgrimage into the archives of nickel toxicology, Ann. Clin. Lab. Sci. 19:1–16.Google Scholar
  172. Sunderman, F. W., Jr., 1990. Regulation of gene expression by metals: Zinc finger-loop domains in transcription factors, hormone receptors, and proteins encoded by oncogenes, in Metal Ions in Biology and Medicine (P. Collery, L. A. Poirier, M. Manfait, and J. C. Etienne, eds.), John Libby Eurotext, Paris, pp. 549–554.Google Scholar
  173. Sunderman, F. W., Jr., 1992. Toxicokinetics of nickel in humans, in Nickel and Human Health: Current Perspectives (E. Nieboer and J. O. Nriagu, eds.), John Wiley & Sons, New York, pp. 69–76.Google Scholar
  174. Sunderman, F. W., Jr., Nomoto, S., Pradhan, A. M., Levine, H., Bernstein, S. H., and Hirsch, R., 1970. Increased concentrations of serum nickel after acute myocardial infarction, N. Engl. J. Med. 283:896–899.Google Scholar
  175. Sunderman, F. W., Jr., Nomoto, S., Morang, R., Nechay, M. W., Burke, C. N., and Nielsen, S. W., 1972. Nickel deprivation in chicks, J. Nutr. 102:259–268.Google Scholar
  176. Sunderman, F. W., Jr., Shen, S. K., Mitchell, J. M., Allpass, P. R., and Damjanov, I., 1978. Embryotoxicity and fetal toxicity of nickel in rats, Toxicol. Appl. Pharmacol. 43:381–390.Google Scholar
  177. Sunderman, F. W., Jr., Costa, E. R., Fraser, C., Hui, G., Levine, J. J., and Tse, T. P. H., 1981. 63Nickel-constituents in renal cytosol of rats after injection of ‘nickel chloride, Ann. Clin. Lab. Sci. 11:488–496.Google Scholar
  178. Sunderman, F. W., Jr., Mangold, B. L. K., Wong, S. H. Y., Shen, S. K., Reid, M. C., and Jansson, I., 1983. High-performance size-exclusion chromatography of 63Ni-constituents in renal cytosol and microsomes from 63NiC12-treated rats, Res. Commun. Chem. Pathol. Pharmacol. 39: 477–492.Google Scholar
  179. Sunderman, F. W., Jr., Aitio, A., Berlin, A., Bishop, C., Buringh, E., Davis, W., Gounar, M., Jacquignon, P. C., Mastromatteo, E., Rigaut, J. P., Rosenfeld, C., Saracci, R., and Sors, A. (eds.), 1984. Nickel in the Human Environment,Oxford University Press, New York.Google Scholar
  180. Sunderman, F. W., Jr., Marzouk, A., Hopfer, S. M., Zaharia, O., and Reid, M. C., 1985. Increased lipid peroxidation in tissues of nickel chloride-treated rats, Ann. Clin. Lab. Sci. 15:229–236.Google Scholar
  181. Suzuki, K., Bennon, Y., Mitsuoka, T., Takebe, S., Kobashi, K., and Hase, J., 1979. Ureaseproducing species of intestinal anaerobes and their activities, Appl. Environ. Microbiol. 37: 379–382.Google Scholar
  182. Swierenga, S. H. H., and Basrur, P. K., 1968. Effect of nickel on cultured rat embryo muscle cells, Lab. Invest. 19:663–674.Google Scholar
  183. Tabata, M., and Sarkar, B., 1992. Specific nickel(II)-transfer process between the native sequence peptide representing the nickel(II)-transport site of human serum albumin and L-histidine, J. Inorg. Biochem. 45:93–104.Google Scholar
  184. Templeton, D. M., 1987. Interaction of toxic cations with the glomerulus: Binding of Ni to purified glomerular basement membrane, Toxicology 43:1–15.Google Scholar
  185. Templeton, D. M., 1992. Nickel at the renal glomerulus: Molecular and cellular interactions, in Nickel and Human Health: Current Perspectives (E. Nieboer and J. O. Nriagu, eds.), John Wiley & Sons, New York, pp. 135–170.Google Scholar
  186. Templeton, D. M., and Sarkar, B., 1985. Peptide and carbohydrate complexes of nickel in human kidney, Biochem. J. 230:35–42.Google Scholar
  187. Templeton, D. M., and Sarkar, B., 1986. Nickel binding to the C-terminal tryptic fragment of a peptide from human kidney, Biochim. Biophys. Acta 884:383–386.Google Scholar
  188. Tsangaris, J. M., Chang, J. W., and Martin, R. B., 1969. Cupric and nickel ion interactions with proteins as studied by circular dichroism, Arch. Biochem. Biophys. 130:53–58.Google Scholar
  189. Tveito, G., Hansteen, 1.-L., Dalen, H., and Haugen, A., 1989. Immortalization of normal human kidney epithelial cells by nickel(I1), Cancer Res. 49:1829–1835.Google Scholar
  190. Umeda, M., and Nishimura, M., 1979. Inducibility of chromosomal aberrations by metal compounds in cultured mammalian cells, Mutat. Res. 67:221–229.Google Scholar
  191. Van de Sande, J. H., McIntosh, L. P., and Jovin, T. M., 1982. Mn’ and other transition metals at low concentration induce the right-to-left helical transformation of poly[d(G-C)], EMBO J. 1:777–782.Google Scholar
  192. Wang, X. W., and Costa, M., 1991. Changes in protein phosphorylation in wild-type and nickelresistant cells and their involvement in morphological elongation, Biol. Metals 4:201–206.Google Scholar
  193. Wang, X. W., Imbra, R. J., and Costa, M., 1988. Characterization of mouse cell lines resistant to nickel(II) ions, Cancer Res. 48:6850–6854.Google Scholar
  194. Wase, A. W., Goss, D. M., and Boyd, M. J., 1954. The metabolism of nickel. I. Spatial and temporal distribution of 63Ni in the mouse, Arch. Biochem. Biophys. 51:1–4.Google Scholar
  195. Wozney, M. A., Bryant, M. P., Holdeman, L. V., and Moore, W. E. C., 1977. Urease assay and urease-producing species of anaerobes in the bovine and human feces, Appl. Environ. Microbiol. 33:1097–1104.Google Scholar
  196. Zhong, Z., Troll, W., Koenig, K. L., and Frenkel, K., 1990. Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes, Cancer Res. 50:7564–7570.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert P. Hausinger
    • 1
  1. 1.Departments of Microbiology and BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations