Advertisement

Methyl Coenzyme M Reductase

  • Robert P. Hausinger
Part of the Biochemistry of the Elements book series (BOTE, volume 12)

Abstract

The biogenesis of methane is carried out by a group of strictly anaerobic archaea (formerly termed archaebacteria), referred to as methanogens, that obtain energy from one-or two-carbon substrates according to the following reactions [reviewed by Daniels et al. (1984), Ferry (1992), Jones et al. (1987), and Thauer (1990)]:
(6-1)
(6-2)
(6-3)
(6-4)
(6-5)
(6-6)
Using distinct pathways, these substrates and other substrates are all converted to a common methylated intermediate that is subsequently converted to methane. Each pathway involves a series of novel coenzymes. The structures and functions of these singular compounds have been reviewed (DiMarco et al.,1990; Rouvière and Wolfe, 1988), and only an overview is presented here. Carbon dioxide is reduced to the formyl level with the participation of a furan-containing compound, termed methanofuran. The formyl group is transferred to a special pterin, named tetrahydromethanopterin, where it is converted to the methenyl derivative and sequentially reduced to the meth­ylene and methyl levels. Reduction of the methenyltetrahydromethanopterin requires an unusual 5-deazaflavin, denoted coenzyme F420 as the electron donor. The methyl group is subsequently transferred to 2-mercaptoethanesulfonate (coenzyme M, HS-CoM) to form 2-(methylthio)ethanesulfonate (methyl coenzyme M, methyl-S-CoM), which is the direct precursor of methane. The ultimate source of electrons in each of these reactions is hydrogen, requiring the participation of nickel-containing hydrogenases (discussed in Chapter 4). Formate metabolism requires the action of formate dehydrogenase (containing an atypical molybdopterin cofactor) and a nickel-containing hydrogenase; the combined action of these enzymes results in the release of carbon dioxide and hydrogen gas.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Signal Axial Ligand Methanogenic Bacterium Methanosarcina Barkeri 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, Y., Krzycki, J. A., and Floss, H. G., 1991. Steric course of reduction of ethyl coenzyme M to ethane catalyzed by methyl coenzyme M reductase from Methanosarcina barkeri, J. Am. Chem. Soc. 113: 4700–4701.Google Scholar
  2. Albracht, S. P. J., Ankel-Fuchs, D., van der Zwaan, J. W., Fontijn, R. D., and Thauer, R. K., 1986. A new EPR signal of nickel in Methanobacterium thermoautotrophicum, Biochim. Biophys. Acta 870: 50–57.Google Scholar
  3. Albracht, S. P. J., Ankel-Fuchs, D., Böcher, R., Ellermann, J., Moll, J., van der Zwaan, J. W., and Thauer, R. K., 1988. Five new EPR signals assigned to nickel in methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum, strain Marburg, Biochim. Biophys. Acta 955: 86–102.Google Scholar
  4. Aldrich, H. C., Beimborn, D. B., Bokranz, M., and Schönheit, P., 1987. Immunocytochemical localization of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum, Arch. Microbiol. 147: 190–194.Google Scholar
  5. Allmansberger, R., Bokranz, M., Kröckel, L., Schallenberg, J., and Klein, A., 1989. Conserved gene structures and expression signal in methanogenic archaebacteria, Can. J. Microbiol. 35: 52–57.PubMedGoogle Scholar
  6. Ankel-Fuchs, D., and Thauer, R. K., 1986. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin, Eur. J. Biochem. 156: 171–177.PubMedGoogle Scholar
  7. Ankel-Fuchs, D., Jaenchen, R., Gebhardt, N. A., and Thauer, R. K., 1984. Functional relationship between protein-bound and free factor F430 in Methanobacterium, Arch. Microbiol. 137: 332–337.Google Scholar
  8. Ankel-Fuchs, D., Huster, R., Mörschel, E., Albracht, S. P. J., and Thauer, R. K., 1986. Structure and function of methyl-coenzyme M reductase and of factor F430 in methanogenic bacteria, Syst. Appl. Microbiol. 7: 383–387.Google Scholar
  9. Ankel-Fuchs, D., Böcher, R., Thauer, R. K., Noll, K. M., and Wolfe, R. S., 1987. 7-Mercaptoheptanoylthreonine phosphate functions as component B in ATP-independent methane formation from methyl-CoM with reduced cobalamin as electron donor, FEBS Lett. 213:123127.Google Scholar
  10. Berkessel, A., 1991. Methyl-coenzyme M reductase: Model studies on pentadentate nickel complexes and a hypothetical mechanism, Bioorgan. Chem. 19: 101–115.Google Scholar
  11. Bobik, T. A., Olson, K. D., Noll, K. M., and Wolfe, R. S., 1987. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium, Biochem. Biophys. Res. Commun. 149: 455–460.PubMedGoogle Scholar
  12. Bokranz, M., and Klein, A., 1987. Nucleotide sequence of the methyl coenzyme M reductase gene cluster from Methanosarcina barkeri, Nucleic Acids Res. 15: 4350–4351.PubMedGoogle Scholar
  13. Bokranz, M., Bäumner, G., Allmansberger, R., Ankel-Fuchs, D., and Klein, A., 1988. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum, J. Bacteriol. 170: 568–577.PubMedGoogle Scholar
  14. Bonacker, L. G., Bauder, S., and Thauer, R. K., 1992. Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera, Eur. J. Biochem. 206: 87–92.PubMedGoogle Scholar
  15. Brandis, A., Thauer, R. K., and Stetter, K. 0., 1981. Relatedness of strains AH and Marburg of Methanobacterium thermoautotrophicum, Zentralbl. Bakteriol. Parasitenkd. Jnfektionskr. Hyg. Abt. I Orig. Reihe C 2: 311–317.Google Scholar
  16. Brenner, M. C., Ma, L., Johnson, M. K., and Scott, R. A., 1992. Spectroscopic characterization of the alternate form of S-methylcoenzyme M reductase from Methanobacterium thermoautotrophicum, Biochim. Biophys. Acta 1120: 160–166.PubMedGoogle Scholar
  17. Cheeseman, M. R., Ankel-Fuchs, D., Thauer, R. K., and Thompson, J., 1989. The magnetic properties of the nickel cofactor F430 in the enzyme methyl-coenzyme M reductase of Methanobacterium thermoautotrophicum, Biochem. J. 260: 613–616.Google Scholar
  18. Cram, D. S., Sherf, B. A., Libby, R. T., Mattaliano, R. J., Ramachandran, K. L., and Reeve, J. N., 1987. Structure and expression of the genes, mcrBDCGA, which encode the subunits of component C of methyl coenzyme M reductase in Methanococcus vannielli, Proc. Natl. Acad. Sci. USA 84: 3992–3996.PubMedGoogle Scholar
  19. Daniels, L., Sparling, R., and Sprott, G. D., 1984. The bioenergetics of methanogenesis, Biochim. Biophys. Acta 768: 113–163.PubMedGoogle Scholar
  20. Deppenmeier, U., Blaut, M., Mahlmann, A., and Gottschalk, G., 1990. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria, Proc. Natl. Acad. Sci. USA 87: 9449–9453.PubMedGoogle Scholar
  21. Diakun, G. P., Piggott, B., Tinton, H. J., Ankel-Fuchs, D., and Thauer, R. K., 1985. An extendedX-ray-absorption-fine-structure (e.x.a.f.$) study of coenzyme F430 from Methanobacterium thermoautotrophicum, Biochem. J. 232: 281–284.PubMedGoogle Scholar
  22. Diekert, G., Gilles, H.-H., Jaenchen, R., and Thauer, R. K., 1980a. Incorporation of 8 succinate per mol nickel into factors F430 by Methanobacterium thermoautotrophicum, Arch. Microbiol. 128: 256–262.PubMedGoogle Scholar
  23. Diekert, G., Jaenchen, R., and Thauer, R. K., 1980b. Biosynthetic evidence for a nickel tetrapyrrolic structure of factor F430 from Methanobacterium thermoautotrophicum, FEBS Lett. 119: 1 18120.Google Scholar
  24. Diekert, G., Klee, B., and Thauer, R. K., 1980c. Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum, Arch. Microbiol. 124: 103–106.PubMedGoogle Scholar
  25. Diekert, G., Weber, B., and Thauer, R. K., 1980d. Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum, Arch. Microbiol. 127: 273–278.Google Scholar
  26. Diekert, G., Konheiser, U., Piechulla, K., and Thauer, R. K., 1981. Nickel requirement and factor F430 content of methanogenic bacteria, J. Bacteriol. 148: 459–464.PubMedGoogle Scholar
  27. DiMarco, A. A., Bobik, T. A., and Wolfe, R. S., 1990. Unusual coenzymes of methanogenesis, Annu. Rev. Biochem. 59: 355–394.PubMedGoogle Scholar
  28. Eidsness, M. K., Sullivan, R. J., Schwartz, J. R., Hartzell, P. L., Wolfe, R. S., Flank, A.-M., Cramer, S. P., and Scott, R. A., 1986. Structural diversity of F430 from Methanobacterium thermoautotrophicum. A nickel X-ray absorption spectroscopic study, J. Am. Chem. Soc. 108: 3120–3121.Google Scholar
  29. Ellefson, W. L., and Wolfe, R. S., 1980. Role of component C in the methylreductase system of Methanobacterium, J. Biol. Chem. 255: 8388–8389.PubMedGoogle Scholar
  30. Ellefson, W. L., and Wolfe, R. S., 1981. Component C of the methylreductase system of Methanobacterium, J. Biol. Chem. 256: 4259–4262.PubMedGoogle Scholar
  31. Ellefson, W. L., Whitman, W. B., and Wolfe, R. S., 1981. Nickel-containing factor F430: Chromophore of the methylreductase of Methanobacterium, Proc. Natl. Acad. Sei. USA 79: 37073710.Google Scholar
  32. Ellermann, J., Kobelt, A., Pfaltz, A., and Thauer, R. K., 1987. On the role of N-7-mercaptoheptanoylO-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane, FEBS Lett. 220: 358–362.PubMedGoogle Scholar
  33. Ellermann, J., Hedderich, R., Böcher, R., and Thauer, R. K., 1988. The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg), Eur. J. Biochem. 172: 669–677.PubMedGoogle Scholar
  34. Ellermann, J., Rospert, S., Thauer, R. K., Bokranz, M., Klein, A., Voges, M., and Berkessel, A., 1989. Methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum (strain Marburg). Purity, activity, and inhibitors, Eur. J. Biochem. 184: 63–68.PubMedGoogle Scholar
  35. Eschenmoser, A., 1986. Chemistry of corphinoids, Ann. N. Y. Acad. Sci. 471: 108–129.Google Scholar
  36. Färber, G., Keller, W., Kratky, C., Jaun, B., Pfaltz, A., Spinner, C., Kobelt, A., and Eschenmoser, A., 1991. Coenzyme F430 from methanogenic bacteria: Complete assignment of configuration based on an X-ray analysis of 12,13-diepi-F430 pentamethylester and on NMR spectroscopy, Helv. Chim. Acta 74: 697–716.Google Scholar
  37. Fässler, A., Pfaltz, A., Müller, P. M., Farooq, S., Kratky, C., Kräutler, B., and Eschenmoser, A., 1982. Herstellung und eigenschafter einiger hydrocorphinoider nickel(II)-komplexe, Helv. Chico. Acta 65: 812–827.Google Scholar
  38. Fässler, A., Pfaltz, A., Kräutler, B., and Eschenmoser, A., 1984. Chemistry of corphinoids: Synthesis of a nickel(II) complex containing the chromophore system of coenzyme F430, J. Chem. Soc., Chem. Commun. 1984: 1365–1367.Google Scholar
  39. Fässler, A., Kobelt, A., Pfaltz, A., Eschenmoser, A., Bladon, C., Battersby, A. R., and Thauer, R. K., 1985. Zur Kenntnis des Faktors F430 aus methanogenen bakterien: Absolute konfiguration, Heiv. Chim. Acta 68: 2287–2298.Google Scholar
  40. Ferry, J. G., 1992. Biochemistry of methanogenesis, Crit. Rev. Biochem. Mol. Biol. 27: 473–503.PubMedGoogle Scholar
  41. Friedmann, H. C., Klein, A., and Thauer, R. K., 1990. Structure and function of the nickel porphinoid, coenzyme F430, and of its enzyme, methyl coenzyme M reductase, FEMS Microbiol. Rev. 87: 339–348.Google Scholar
  42. Furenlid, L. R., Renner, M. W., and Fajer, J., 1990a. EXAFS studies of nickel(II) and nickel(I) factor 430 M. Conformational flexibility of the F430 skeleton, J. Am. Chem. Soc. 112: 89878989.Google Scholar
  43. Furenlid, L. R., Renner, M. W., Smith, K. M., and Fajer, J., 1990b. Structural consequences of nickel versus macrocycle reductions in F430 models: EXAFS studies of a Ni(I) anion and Ni(II) r anion radicals, J. Am. Chem. Soc. 112: 1634–1635.Google Scholar
  44. Furenlid, L. R., Renner, M. W., Szalda, D. J., and Fujita, E., 1991. EXAFS studies of Ni“, Ni’, and Ni’-CO tetraazamacrocycles and the crystal structure of (5,7,7,12,14,14-hexamethyl1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(I) perchlorate, J. Am. Chem. Soc. 113: 883892.Google Scholar
  45. Gilles, H., and Thauer, R. K., 1983. Uroporphyrinogen III, an intermediate in the biosynthesis of the nickel-containing factor F430 in Methanobacterium thermoautotrophicum, Eur. J. Biochem. 135: 109–112.PubMedGoogle Scholar
  46. Gunsalus, R. P., and Wolfe, R. S., 1978. Chromophoric factors F342 and F430 of Methanobacterium thermoautotrophicum, FEMS Microbiol. Lett. 3: 191–193.Google Scholar
  47. Gunsalus, R. P., and Wolfe, R. S., 1980. Methylcoenzyme M reductase from Methanobacterium thermoautotrophicum. Resolution and properties of the components, J. Biol. Chem. 255: 1891–1895.PubMedGoogle Scholar
  48. Gunsalus, R. P., Romesser, J. A., and Wolfe, R. S., 1978. Preparation of coenzyme M analogoues and their activity in the methyl conenzyme M reductase system of Methanobacterium thermoautotrophicum, Biochemistry 17: 2374–2377.PubMedGoogle Scholar
  49. Hamilton, C. L., Scott, R. A., and Johnson, M. K., 1989. The magnetic and electronic properties of Methanobacterium thermoautotrophicum (strain OH) methyl coenzyme M reductase and its nickel tetrapyrrole cofactor F430. A low temperature magnetic circular dichroism study, J. Biol. Chem. 264: 11605–11613.PubMedGoogle Scholar
  50. Hamilton, C. L., Ma, L., Renner, M. W., and Scott, R. A., 1991. Ni(II) and Ni(I) forms of pentaalkylamide derivatives of cofactor F430 of Methanobacterium thermoautotrophicum, Biochim. Biophys. Acta 1074: 312–319.PubMedGoogle Scholar
  51. Hartzell, P. L., and Wolfe, R. S., 1986a. Requirement of the nickel tetrapyrrole F430 for in vitro methanogenesis: Reconstitution of methylreductase component C from its dissociated subunits, Proc. Natl. Acad. Sci. USA 83: 6726–6730.PubMedGoogle Scholar
  52. Hartzell, P. L., and Wolfe, R. S., 1986b. Comparative studies of component C from the methylreductase system of different methanogens, Syst. Appl. Microbiol. 7: 376–382.Google Scholar
  53. Hartzell, P. L., Donnelly, M. I., and Wolfe, R. S., 1987. Incorporation of coenzyme M into component C of methylcoenzyme M methylreductase during in vitro methanogenesis, J. Biol. Chem. 262: 5581–5586.PubMedGoogle Scholar
  54. Hartzell, P. L., Escalante-Semerena, J. C., Bobik, T. A., and Wolfe, R. S., 1988. A simplified methylcoenzyme M methylreductase assay with artificial electron donors and different preparations of component C from Methanobacterium thermoautotrophicum OH, J. Bacteriol. 170: 2711–2715.PubMedGoogle Scholar
  55. Hausinger, R. P., Orme-Johnson, W. H., and Walsh, C., 1984. Nickel tetrapyrrole cofactor F430: Comparison of the forms bound to methyl coenzyme M reductase and protein free in cells of Methanobacterium thermoautotrophicum, Biochemistry 23: 801–804.Google Scholar
  56. Hedderich, R., and Thauer, R. K., 1988. Methanobacterium thermoautotrophicum contains a soluble enzyme system that specifically catalyzes the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate with H2i FEBS Lett. 234:223227.Google Scholar
  57. Hedderich, R., Berkessel, A., and Thauer, R. K., 1990. Purification and properties of heterodisulfide reductase from Methanobacterium thermoautotrophicum (strain Marburg), Eur. J. Biochem. 193: 255–261.PubMedGoogle Scholar
  58. Helveston, M. C., and Castro, C. E., 1992. Nickel(I) octaethylisobacteriochlorin anion. An exceptional nucleophile. Reduction and coupling of alkyl halides by anionic and radical processes. A model for factor F-430, J. Am. Chem. Soc. 114: 8490–8496.Google Scholar
  59. Huster, R., Gilles, H.-H., and Thauer, R. K., 1985. Is coenzyme M bound to factor F430 in methanogenic bacteria? Experiments with Met hanobrevibacter ruminantium, Eur. J. Biochem. 148: 107–111.PubMedGoogle Scholar
  60. Jablonski, P. E., and Ferry, J. G., 1991. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila, J. Bacteriol. 173: 2481 2487.Google Scholar
  61. Jaenchen, R., Diekert, G., and Thauer, R. K., 1981. Incorporation of methionine-derived methyl groups into factor F430 by Methanobacterium thermoautotrophicum, FEBS Lett. 130: 133136.Google Scholar
  62. Jaun, B., 1990. Coenzyme F430 from methanogenic bacteria: Oxidation of F430 pentamethyl ester to the nickel(III) form, Hely. Chim. Acta 73: 2209–2217.Google Scholar
  63. Jaun, B., and Pfaltz, A., 1986. Coenzyme F430 from methanogenic bacteria: Reversible one-electron reduction of F430 pentamethyl ester to the nickel(I) form, J. Chem. Soc., Chem. Commun. 1986: 1327–1329.Google Scholar
  64. Jaun, B., and Pfaltz, A., 1988. Coenzyme F430 from methanogenic bacteria: Methane formation by reductive carbon-sulphur bond cleavage of methyl sulfonium ions catalyzed by F430 pentamethyl ester, J. Chem. Soc., Chem. Commun. 1988: 293–294.Google Scholar
  65. Jetten, M. S., Pierik, A. J., and Hagen, W. R., 1991. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii, Eur. J. Biochem. 202: 1291–1297.PubMedGoogle Scholar
  66. Jones, W. J., Nagle, D. P., Jr., and Whitman, W. B., 1987. Methanogens and the diversity of archaebacteria, Microbiol. Rev. 51: 135–177.PubMedGoogle Scholar
  67. Keltjens, J. T., Whitman, W. B., Caerteling, C. G., van Kooten, A. M., Wolfe, R. S., and Vogels, G. D., 1982. Presence of coenzyme M derivatives in the prosthetic group (coenzyme MF43o) of methylcoenzyme M reductase from Methanobacterium thermoautotrophicum, Biochem. Biophys. Res. Commun. 108: 495–503.Google Scholar
  68. Keltjens, J. T., Caerteling, A. M., van Kooten, A. M., van Dijk, H. F., and Vogels, G. D., 1983a. Chromophoric derivatives of coenzyme MF430, a proposed coenzyme of methanogenesis in Methanobacterium thermoautotrophicum, Arch. Biochem. Biophys. 223: 235–253.PubMedGoogle Scholar
  69. Keltjens, J. T., Caerteling, C. G., van Kooten, A. M., van Dijk, H. F., and Vogels, G. D., 1983b. 6,7-Dimethyl-8-ribityl-5,6,7,8-tetrahydrolumazine, a proposed constituent of coenzyme M F430 from methanogenic bacteria, Biochim. Biophys. Acta 743: 351–358.Google Scholar
  70. Keltjens, J. T., Hermans, J. M. H., Rijsdijk, G. J. F. A., van der Drift, C., and Vogels, G. D., 1988. Interconversion of F430 derivatives of methanogenic bacteria, Antonie van Leeuwenhoek 54: 207–220.PubMedGoogle Scholar
  71. Klein, A., Allmansberger, R., Bokranz, M., Knaub, S., Müller, B., and Muth, E., 1988. Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria, Mol. Gen. Genet. 213: 409–420.PubMedGoogle Scholar
  72. Kratky, C., Fässler, A., Pfaltz, A., Kräutler, B., Jaun, B., and Eschenmoser, A., 1984. Chemistry of corphinoids: Structural properties of corphinoid nickel(II) complexes related to coenzyme F430, J. Chem. Soc., Chem. Commun. 1984: 1368–1371.Google Scholar
  73. Kratky, C., Waditschatka, R., Angst, C., Johansen, J. E., Plaquevent, J. C., Schreiber, J., and Eschenmoser, A., 1985. Die sattelkonformation der hydroporphinoiden nickel(II)-komplexe: Struktur, ursprung und stereochemische consequenzen, Hely. Chim. Acta 68: 1312–1337.Google Scholar
  74. Krone, U. E., Laufer, K., Thauer, R. K., and Hogenkamp, H. P. C., 1989. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C, hydrocarbons in methanogenic bacteria, Biochemistry 28: 10061–10065.PubMedGoogle Scholar
  75. Krzycki, J. A., and Prince, R. C., 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase, and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate, Biochim. Biophys. Acta 1015: 53–60.Google Scholar
  76. Lin, S.-K., and Jaun, B., 1991. Coenzyme F430 from methanogenic bacteria: Detection of a paramagnetic methylnickel(II) derivative of the pentamethyl ester by 2H-NMR spectroscopy, Hely. Chim. Acta 74: 1725–1735.Google Scholar
  77. Lin, S.-K., and Jaun, B., 1992. Coenzyme F430 from methanogenic bacteria: Mechanistic studies on the reductive cleavage of sulfonium ions catalyzed by F430 pentamethyl ester, Hely. Chim. Acta 75: 1478–1490.Google Scholar
  78. Livingston, D. A., Pfaltz, A., Schreiber, J., Eschenmoser, A., Ankel-Fuchs, D., Moll, J., and Thauer, R. K., 1984. Zur kenntnis des faktors F430 aus methanogenen bakterien: Struktur des proteinfreien faktors, Hely. Chim. Acta 67: 334–351.Google Scholar
  79. Mayer, F., Rohde, M., Salzmann, M., Jussofie, A., and Gottschalk, G., 1988. The methanoreductosome: A high-molecular-weight enzyme complex in the methanogenic bacterium strain Göl that contains components of the methylreductase system, J. Bacteriol. 170: 1438–1444.PubMedGoogle Scholar
  80. Moura, I., Moura, J. J. G., Santos, H., Xavier, A. V., Burch, G., Peck, H. D., Jr., and LeGall, J., 1983. Proteins containing the factor F430 from Methanosarcina barkeri and Methanobacterium thermoautotrophicum: Isolation and properties, Biochim. Biophys. Acta 742: 84–90.Google Scholar
  81. Mucha, H., Keller, E., Weber, H., Lingens, F., and Trosch, W., 1985. Sirohydrochlorin, a precursor of factor F430 biosynthesis in Methanobacterium thermoautotrophicum, FEBS Lett. 190: 169173.Google Scholar
  82. Nagle, D. P., Jr., and Wolfe, R. S., 1983. Component A of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum: Resolution into four components, Proc. Natl. Acad. Sci. USA 80: 2151–2155.PubMedGoogle Scholar
  83. Noll, K. M., and Wolfe, R. S., 1986. Component C of the methylcoenzyme M methylreductase system contains bound 7-mercaptoheptanoylthreonine phosphate (HS-HTP), Biochem. Biophys. Res. Commun. 139: 889–895.PubMedGoogle Scholar
  84. Noll, K. M., and Wolfe, R. S., 1987. The role of 7-mercaptoheptanoylthreonine phosphate in the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum, Biochem. Biophys. Res. Commun. 145: 204–210.PubMedGoogle Scholar
  85. Olson, K. D., Won, H., Wolfe, R. S., Hare, D., and Summers, M. F., 1990. Stereochemical studies of coenzyme F430 based on 2D NOESY back-calculations, J. Am. Chem. Soc. 112: 58845886.Google Scholar
  86. Olson, K. D., McMahon, C. W., and Wolfe, R. S., 1991. Photoactivation of the 2-(methylthio)ethanesulfonic acid reductase from Methanobacterium, Proc. Natl. Acad. Sci. USA 88: 4099–4103.PubMedGoogle Scholar
  87. Olson, K. D., Chmurkowska-Cichowlas, L., McMahon, C. W., and Wolfe, R. S., 1992. Structural modifications and kinetic studies of the substrates involved in the final step of methane formation in Methanobacterium thermoautotrophicum, J. Bacteriol. 174: 1007–1012.PubMedGoogle Scholar
  88. Ossmer, R., Mund, T., Hartzell, P. L., Konheiser, U., Kohring, G. W., Klein, A., Wolfe, R. S., Gottschalk, G., and Mayer, F., 1986. Immunocytochemical localization of component C of the methylreductase system in Methanococcus voltae and Methanobacterium thermoautotrophicum, Proc. Natl. Acad. Sci. USA 83: 5789–5792.PubMedGoogle Scholar
  89. Pfaltz, A., 1988. Structure and properties of coenzyme F430, in The Bioinorganic Chemistry of Nickel ( J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 275–298.Google Scholar
  90. Pfaltz, A., Jaun, B., Fässler, A., Eschenmoser, A., Jaenchen, R., Gilles, H. H., Diekert, G., and Thauer, R. K., 1982. Zur kenntnis des faktors F430 aus methanogenen bakterien: Struktur des porphinoiden ligand-systems, Heiv. Chim. Acta 65: 828–865.Google Scholar
  91. Pfaltz, A., Livingston, D. A., Jaun, B., Diekert, G., Thauer, R. K., and Eschenmoser, A., 1985. Zur kenntnis des faktors F430 aus methanogenen bakterien: Über die natur der isolierungsartefakte von F430, ein beitrag zur chemie von F430 und zur konformationellen stereochemie der ligandperipherie von hydroporphinoiden nickel(II)-komplexen, Heiv. Chim. Acta 68: 1338–1358.Google Scholar
  92. Pfaltz, A., Kobelt, A., Huster, R., and Thauer, R. K., 1987. Biosynthesis of coenzyme F430 in methanogenic bacteria. Identification of 15,173-seco-F430–173-acid as an intermediate, Fur. J. Biochem. 170: 459–467.Google Scholar
  93. Renner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H.-K., Simpson, D. J., Smith, K. M., and Fajer, J., 1991. Models of factor 430. Structural and spectroscopic studies of Ni(11) and Ni(I) hydroporphyrins, J. Am. Chem. Soc. 113: 6891–6898.Google Scholar
  94. Rospert, S., Linder, D., Ellermann, J., and Thauer, R. K., 1990. Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and OH, Fur. J. Biochem. 194: 871–877.Google Scholar
  95. Rospert, S., Böcher, R., Albracht, S. P. J., and Thauer, R. K., 1991. Methyl-coenzyme M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum, FEBS Len. 291: 371–375.Google Scholar
  96. Rospert, S., Voges, M., Berkessel, A., Albracht, S. P. J., and Thauer, R. K., 1992. Substrateanalogue-induced changes in the nickel-EPR spectrum of active methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum, Eur. J. Biochem. 210: 101–107.PubMedGoogle Scholar
  97. Rouvière, P. E., and Wolfe, R. S., 1987. Use of subunits of the methylreductase protein for taxonomy of methanogenic bacteria, Arch. Microbiol. 148: 253–259.Google Scholar
  98. Rouvière, P. E., and Wolfe, R. S., 1988. Novel biochemistry of methanogenesis, J. Biol. Chem. 263: 7913–7916.PubMedGoogle Scholar
  99. Rouvière, P. E., Bobik, T. A., and Wolfe, R. S., 1988. Reductive activation of the methyl coenzyme M methylreductase system of Methanobacterium thermoautotrophicum OH, J. Bacteriol. 170: 3946–3952.PubMedGoogle Scholar
  100. Schönheit, P., Moll, J., and Thauer, R. K., 1979. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum, Arch. Microbiol. 123: 105–107.PubMedGoogle Scholar
  101. Scott, R. A., Hartzell, P. L., Wolfe, R. S., LeGall, J., and Cramer, S. P., 1986. Nickel X-ray absorption spectroscopy of Methanobacterium thermoautotrophicum S-methyl coenzyme-M reductase, in Frontiers of Bioinorganic Chemistry ( A. V. Xavier, ed.), VCH Publishers, New York, pp. 20–26.Google Scholar
  102. Shelnutt, J. A., 1987. Axial ligation-induced structural changes in nickel hydrocorphinoids related to coenzyme F430 detected by Raman difference spectroscopy, J. Am. Chem. Soc. 109: 41694173.Google Scholar
  103. Sherf, B. A., and Reeve, J. N., 1990. Identification of the mcrD gene product and its association with component C of methyl coenzyme M reductase in Methanococcus vannielii, J. Bacteriol. 172: 1828–1833.PubMedGoogle Scholar
  104. Shiemke, A. K., Eirich, L. D., and Loehr, T. M., 1983. Resonance Raman spectroscopic characterization of the nickel cofactor, F430, from methanogenic bacteria, Biochim. Biophys. Acta 748: 143–147.Google Scholar
  105. Shiemke, A. K., Hamilton, C. L., and Scott, R. A., 1988a. Structural heterogeneity and purification of protein-free F430 from the cytoplasm of Methanobacterium thermoautrophicum, J. Biol. Chem. 263: 5611–5616.PubMedGoogle Scholar
  106. Shiemke, A. K., Scott, R. A., and Shelnutt, J. A., 1988b. Resonance Raman spectroscopic investigation of axial coordination in M. thermoautotrophicum methyl reductase and its nickel tetrapyrrole cofactor F430, J. Am. Chem. Soc. 110: 1645–1646.Google Scholar
  107. Shiemke, A. K., Kaplan, W. A., Hamilton, C. L., Shelnutt, J. A., and Scott, R. A., 1989a. Structural and spectroscopic characterization of exogeneous ligand binding to isolated factor F430 and its conformational isomers, J. Biol. Chem. 264: 7276–7284.PubMedGoogle Scholar
  108. Shiemke, A. K., Shelnutt, J. A., and Scott, R. A., 1989b. Coordination chemistry of F430. Axial ligation equilibrium between square-planar and bis-aquo species in aqueous solution, J. Biol. Chem. 264: 11236–11245.PubMedGoogle Scholar
  109. Thauer, R. K., 1990. Energy metabolism of methanogenic bacteria, Biochim. Biophys. Acta 1018: 256–259.Google Scholar
  110. Wackett, L. P., Hartwieg, E. A., King, J. A., Orme-Johnson, W. H., and Walsh, C. T., 1987a. Electron microscopy of nickel-containing methanogenic enzymes: Methyl reductase and F420-reducing hydrogenase, J. Bacteriol. 169: 718–727.PubMedGoogle Scholar
  111. Wackett, L. P., Honek, J. F., Begley, T. P., Wallace, V., Orme-Johnson, W. H., and Walsh, C. T., 1987b. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase, Biochemistry 26: 6012–6018.PubMedGoogle Scholar
  112. Wackett, L. P., Honek, J. F., Begley, T. P., Shames, S. L., Niederhoffer, E. C., Hausinger, R. P., Orme-Johnson, W. H., and Walsh, C. T., 1988. Methyl-S-coenzyme-M reductase: A nickel-dependent enzyme catalyzing the terminal redox step in methane biogenesis, in The Bioinorganic Chemistry of Nickel (J. R. Lancaster, Jr.), VCH Publishers, New York, pp. 249–274.Google Scholar
  113. Weil, C. F., Cram, D. S., Sherf, B. A., and Reeve, J. N., 1988. Structure and comparative analysis of the genes encoding component C of methyl coenzyme M reductase in the extremely thermophilic archaebacterium Methanothermus fervidus, J. Bacteriol. 170: 4718–4726.PubMedGoogle Scholar
  114. Weil, C. F., Sherf, B. A., and Reeve, J. N., 1989. A comparison of the methyl reductase genes and gene products, Can. J. Microbiol. 35: 101–108.PubMedGoogle Scholar
  115. Whitman, W. B., and Wolfe, R. S., 1980. Presence of nickel in the factor F430 from Methanobacterium bryantii, Biochem. Biophys. Res. Commun. 92: 1196–1201.PubMedGoogle Scholar
  116. Whitman, W. B., and Wolfe, R. S., 1985. Activation of the methylreductase system from Methanobacterium bryantii by corrins, J. Bacteriol. 164: 165–172.PubMedGoogle Scholar
  117. Won, H., Olson, K. D., Wolfe, R. S., and Summers, M. F., 1990. Two-dimensional NMR studies of native coenzyme F430, J. Am. Chem. Soc. 112: 2178–2184.Google Scholar
  118. Won, H., Olson, K. D., Hare, D. R., Wolfe, R. S., Kratky, C., and Summers, M. F., 1992. Structural modelling of small molecules by NMR: Solution-state structure of 12, l3-diepimeric coenzyme F430 and comparison with the X-ray structure of the pentamethyl ester derivative, J. Am. Chem. Soc. 114: 6880–6892.Google Scholar
  119. Zimmer, M., and Crabtree, R. H., 1990. Bending of the reduced porphyrin of factor F430 can accommodate a trigonal-bipyramidal geometry at nickel: A conformational analysis of this nickel-containing tetrapyrrole, in relation to archaebacterial methanogenesis, J Am. Chem. Soc. 112: 1062–1066.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert P. Hausinger
    • 1
  1. 1.Departments of Microbiology and BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations