Advertisement

Carbon Monoxide Dehydrogenase

  • Robert P. Hausinger
Part of the Biochemistry of the Elements book series (BOTE, volume 12)

Abstract

Carbon monoxide (CO) is metabolized by a wide range of microorganisms according to the following reversible reaction:
(5-1)
Various aerobic bacteria including species of Pseudomonas, Alcaligenes, Bacillus, Arthrobacter, Azotobacter, and Azotomonas are capable of CO oxidation by using a molybdopterin-iron-sulfur-flavin-containing enzyme termed carbon monoxide:acceptor oxidoreductase (Meyer and Schlegel, 1983). Because this enzyme does not possess nickel, these carboxydotrophic microbes will not be further discussed here. Rather, this chapter focuses on anaerobic microorganisms that metabolize CO by using a nickel-containing enzyme that is often referred to as CO dehydrogenase. In many cases, anaerobic CO metabolism is only a side reaction for an enzyme complex which is normally involved in the cellular biosynthesis or degradation of acetate. Thus, CO dehydrogenase plays a central role in the growth of acetogenic bacteria and selected other autotrophs, in the physiology of aceticlastic methanogens, and in CO-dependent growth of several other microorganisms. The properties and roles of the nickel-dependent enzymes from each of these classes of microbes are discussed below.

Keywords

Electron Paramagnetic Resonance Acetyl Coenzyme Autotrophic Growth Acetogenic Bacterium Methanosarcina Barkeri 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbanat, D. R., and Ferry, J. G., 1990. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila, J. Bacteriol. 172: 7145–7150.PubMedGoogle Scholar
  2. Abbanat, D. R., and Ferry, J. G., 1991. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA, Proc. Natl. Acad. Sci. USA 88: 3272–3276.CrossRefPubMedGoogle Scholar
  3. Aceti, D. J., and Ferry, J. G., 1988. Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis, J. Biol. Chem. 263: 15444–15448.PubMedGoogle Scholar
  4. Bastian, N. R., Diekert, G., Niederhoffer, E. C., Teo, B.-T., Walsh, C. T., and Orme-Johnson, W. H., 1988. Nickel and iron EXAFS of carbon monoxide dehydrogenase from Clostridium thermoaceticum strain DSM, J. Am. Chem. Soc. 110: 5581–5582.CrossRefGoogle Scholar
  5. Bhatnagar, L., Krzycki, J. A., and Zeikus, J. G., 1987. Analysis of hydrogen metabolism in Methanosarcina barkeri: Regulation of hydrogenase and role of CO-dehydrogenase in H2 production, FEMS Microbiol. Lett. 41: 337–343.CrossRefGoogle Scholar
  6. Bonam, D., and Ludden, P. W., 1987. Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum, J. Biol. Chem. 262: 2980–2987.PubMedGoogle Scholar
  7. Bonam, D., Murrel, S. A., and Ludden, P. W., 1984. Carbon monoxide dehydrogenase from Rhodospirillum rubrum, J. Bacteriol. 159: 693–699.PubMedGoogle Scholar
  8. Bonam, D., McKenna, M. C., Stephens, P. J., and Ludden, P. W., 1988. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: In vivo and in vitro activation by exogenous nickel, Proc. Natl. Acad. Sci. USA 85: 31–35.CrossRefPubMedGoogle Scholar
  9. Bonam, D., Lehman, L., Roberts, G. P., and Ludden, P. W., 1989. Regulation of carbon monoxide dehydrogenase and hydrogenise in Rhodospirillum rubrum: Effects of CO and oxygen on synthesis and activity, J. Bacteriol. 171: 3102–3107.PubMedGoogle Scholar
  10. Bott, M. H., Eikmanns, B., and Thauer, R. K., 1985. Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source, Arch. Microbiol. 143: 266–269.CrossRefGoogle Scholar
  11. Ciurli, S., Yu, S.-B., Holm, R. H., Srivastava, K. K. P., and Münck, E., 1990. Synthetic NiFe3Q4 cubane-type clusters (S = 2) by reductive rearrangement of linear [Fe3Q4(SEt)4]3- (Q = S, Se), J. Am. Chem. Soc. 112: 8169–8171.CrossRefGoogle Scholar
  12. Conover, R. C., Park, J.-B., Adams, M. W. W., and Johnson, M. K., 1990. Formation and properties of a NiFe3S4 cluster in Pyrococcus furiosus ferredoxin, J. Am. Chem. Soc. 112: 4562–4564.CrossRefGoogle Scholar
  13. Conrad, R., and Thauer, R. K., 1983. Carbon monoxide production by Methanobacterium thermoautotrophicum, FEMS Microbiol. Lett. 20: 229–232.CrossRefGoogle Scholar
  14. Cramer, S. P., Eidsness, M. K., Pan, W.-H., Morton, T. A., Ragsdale, S. W., DerVartanian, D. V., Lungdahl, L. G., and Scott, R. A., 1987. X-ray absorption spectroscopic evidence for a unique nickel site in Clostridium thermoaceticum carbon monoxide dehydrogenase, Inorg. Chem. 26: 2477–2479.CrossRefGoogle Scholar
  15. Daniels, L., Fuchs, G., Thauer, R. K., and Zeikus, J. G., 1977. Carbon monoxide oxidation by methanogenic bacteria, J. Bacteriol. 132: 118–126.PubMedGoogle Scholar
  16. DeMoll, E., Grahame, D. A., Harnly, J. M., Tsai, L., and Stadtman, T. C., 1987. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii, J. Bacteriol. 169: 3916–3920.PubMedGoogle Scholar
  17. Diekert, G., 1988. Carbon monoxide dehydrogenase of acetogens, in The Bioinorganic Chemistry of Nickel ( J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 299–309.Google Scholar
  18. Diekert, G., and Ritter, M., 1982. Nickel requirement of Acetobacterium woodii, J. Bacteriol. 151: 1043–1045.PubMedGoogle Scholar
  19. Diekert, G., and Ritter, M., I983a. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum, FEBS Lett. 151: 41–44.Google Scholar
  20. Diekert, G., and Ritter, M., 1983b. Carbon monoxide fixation into the carboxyl group of acetate during growth of Acetobacterium woodii on H2 and CO2, FEMS Microbiol. Lett. 17: 299302.Google Scholar
  21. Diekert, G. B., and Thauer, R. K., 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum, J. Bacteriol. 136: 597–606.PubMedGoogle Scholar
  22. Diekert, G., and Thauer, R. K., 1980. The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum, FEMS Microbiol. Lett. 7:187–189.Google Scholar
  23. Diekert, G. B., Graf, E. G., and Thauer, R. K., 1979. Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum, Arch. Microbiol. 122: 117–120.CrossRefGoogle Scholar
  24. Diekert, G., Hansch, M., and Conrad, R., 1984. Acetate synthesis from 2 CO2 in acetogenic bacteria: Is carbon monoxide an intermediate?, Arch. Microbiol. 138: 224–228.CrossRefGoogle Scholar
  25. Diekert, G., Schrader, E., and Harder, W., 1986. Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii, Arch. Microbiol. 144: 386–392.CrossRefGoogle Scholar
  26. Drake, H. L., 1982. Occurence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum, J. Bacteriol. 149: 561–566.PubMedGoogle Scholar
  27. Drake, H. L., Hu, S.-I., and Wood, H. G., 1980. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum, J. Biol. Chem. 255: 7174–7180.PubMedGoogle Scholar
  28. Drake, H. L., Hu, S.-I., and Wood, H. G., 1981. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase, J. Biol. Chem. 256: 11137–11144.PubMedGoogle Scholar
  29. Eggen, R. I. L., Geerling, A. C. M., Boshoven, A. B. P., and de Vos, W. M., 1991a. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanotrix soehngenii in Escherichia coli, J. Bacteriol. 173: 6383–6389.PubMedGoogle Scholar
  30. Eggen, R. I. L., Geerling, A. C. M., Jetten, M. S. M., and de Vos, W. M., 1991b. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii, J. Biol. Chem. 266: 6883–6887.PubMedGoogle Scholar
  31. Eikmanns, B., and Thauer, R. K., 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate, Arch. Microbiol. 138: 365–370.CrossRefGoogle Scholar
  32. Eikmanns, B., and Thauer, R. K., 1985. Evidence for the involvement and role of a corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri, Arch. Microbiol. 142: 175–179.CrossRefGoogle Scholar
  33. Eikmanns, B., Fuchs, G., and Thauer, R. K., 1985. Formation of carbon monoxide from CO2 and 112 by Methanobacterium thermoautotrophicum, Eur. J. Biochem. 146: 149–154.CrossRefPubMedGoogle Scholar
  34. Ensign, S. A., and Ludden, P. W., 1991. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase, J. Biol. Chem. 266: 18395–18403.PubMedGoogle Scholar
  35. Ensign, S. A., Bonam, D., and Ludden, P. W., 1989a. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum, Biochemistry 28: 4968–4973.CrossRefPubMedGoogle Scholar
  36. Ensign, S. A., Hyman, M. R., and Ludden, P. W., 1989b. Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide, Biochemistry 28: 4973–4979.CrossRefPubMedGoogle Scholar
  37. Ensign, S. A., Campbell, M. J., and Ludden, P. W., 1990. Activation of the nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: Kinetic characterization and reductant requirement, Biochemistry 29: 2162–2168.CrossRefPubMedGoogle Scholar
  38. Fan, C., Gorst, C. M., Ragsdale, S. W., and Hoffman, B. M., 1991. Characterization of the NiFe-C complex formed by reaction of carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR, Biochemistry 30: 431–435.CrossRefPubMedGoogle Scholar
  39. Ferry, J. G., 1992a. Methane from acetate, J. Bacteriol. 174: 5489–5495.PubMedGoogle Scholar
  40. Ferry, J. G., 1 992b. Biochemistry of methanogenesis, Crit. Rev. Biochem. Mol. Biol. 27: 473–503.Google Scholar
  41. Fischer, R., and Thauer, R. K., 1988. Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri. Dependence of the reaction on coenzyme A, FEBS Lett. 228: 249–253.CrossRefGoogle Scholar
  42. Fischer, R., and Thauer, R. K., 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri, Arch. Microbiol. 151: 459–465CrossRefGoogle Scholar
  43. Forster, D., 1979. Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes, Adv. Organomet. Chem. 17: 255–267.CrossRefGoogle Scholar
  44. Fuchs, G., 1986. CO2 fixation in acetogenic bacteria: Variations on a theme, FEMS Microbiol. Rev. 39: 181–213.CrossRefGoogle Scholar
  45. Fuchs, G., and Stupperich, E., 1980. Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum, Arch. Microbiol. 127: 267–272.CrossRefGoogle Scholar
  46. Genthner, B. R. S., and Bryant, M. P., 1982. Growth of Eubacterium limosum with carbon monoxide as the energy source, Appl. Environ. Microbiol. 43: 70–74.PubMedGoogle Scholar
  47. Gorst, C. M., and Ragsdale, S. W., 1990. Characterization of the NiFeCO complex of carbon monoxide dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-coenzyme A synthesis, J. Biol. Chem. 266: 20687–20693.Google Scholar
  48. Grahame, D. A., 1991. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex, J. Biol. Chem. 266: 222272 2233.Google Scholar
  49. Grahame, D. A., and Stadtman, T. C., 1987a. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme, J. Biol. Chem. 262:3706–3712. Google Scholar
  50. Grahame, D. A., and Stadtman, T. C., 1987b. In vitro methane and methyl coenzyme M formation from acetate: Evidence that acetyl-CoA is the required intermediate activated form of acetate, Biochem. Biophys. Res. Commun. 147:254–258. Google Scholar
  51. Hammel, K. E., Cornwell, K. L., Diekert, G. B., and Thauer, R. K., 1984. Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus, J. Bacteriol. 157: 975–978.PubMedGoogle Scholar
  52. Harder, S. R., Lu, W.-P., Feinberg, B. A., and Ragsdale, S. W., 1989. Spectroelectrochemical studies of the corrinoid/iron-sulfur protein involved in acetyl coenzyme A synthesis by Clostridium thermoaceticum, Biochemistry 28: 9080–9087.CrossRefPubMedGoogle Scholar
  53. Holder, U., Schmidt, D.-E., Stupperich, E., and Fuchs, G., 1985. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. III. Evidence for common one-carbon precursor pool and the role of corrinoid, Arch. Microbiol. 141: 229238.Google Scholar
  54. Hu, S.-I., Drake, H. L., and Wood, H. G., 1982. Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum, J. Bacteriol. 149:440–448. Google Scholar
  55. Hu, S.-I., Pezacka, E., and Wood, H. G., 1984. Acetate synthesis from carbon monoxide by Clostridium thermoaceticum. Purification of the corrinoid protein, J. Biol. Chem. 259: 88928897.Google Scholar
  56. Jansen, K., Thauer, R. K., Widdel, F., and Fuchs, G., 1984. Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii, Arch. Microbiol. 138: 257–262.CrossRefGoogle Scholar
  57. Jansen, K., Fuchs, G., and Thauer, R. K., 1985. Autotrophic CO 2 fixation by Desulfovibrio baarsii: Demonstration of enzyme activities characteristic for the acetyl-CoA pathway, FEMS Microbiol. Lett. 28:311–315. Google Scholar
  58. Jetten, M. S. M., Stams, A. J. M., and Zehnder, A. J. B., 1989a. Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii, Eur. J. Biochem. 181: 437–441.CrossRefPubMedGoogle Scholar
  59. Jetten, M. S. M., Stams, A. J. M., and Zehnder, A. J. B., 1989b. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii, J. Bacteriol. 171: 54305435.Google Scholar
  60. Jetten, M. S. M., Hagen, W. R., Pierik, A. J., Stams, A. J. M., and Zehnder, A. J. B., 1991a. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii, Eur. J. Biochem. 195: 385–391.CrossRefPubMedGoogle Scholar
  61. Jetten, M. S. M., Pierik, A. J., and Hagen, W. R., 199 lb. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii, Eur. J. Biochem. 202: 1291–1297.Google Scholar
  62. Jetten, M. S. M., Stams, A. J. M., and Zehnder, A. J. B., 1992. Methanogenesis from acetate: A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp., FEMS Microbiol. Rev. 88:181–198. Google Scholar
  63. Kemner, J. M., 1993. Characterization of electron transfer activities associated with acetate dependent methanogenesis by Methanosarcina barkeri MS, Ph.D. thesis, Michigan State University.Google Scholar
  64. Kemner, J. M., Krzycki, J. A., Prince, R. C., and Zeikus, J. G., 1987. Spectroscopic and enzymatic evidence for membrane-bound electron transport carriers and hydrogenase and their relation to cytochrome b function in Methanosarcina barkeri, FEMS Microbiol. Lett. 48: 267–272.CrossRefGoogle Scholar
  65. Kerby, R., and Zeikus, J. G., 1983. Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source, Curr. Microbiol. 8: 27–30.CrossRefGoogle Scholar
  66. Kerby, R., Niemczura, W., and Zeikus, J. G., 1983. Single-carbon catabolism in acetogens; analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement, J. Bacteriol. 155: 1208–1218.PubMedGoogle Scholar
  67. Kerby, R. L., Hong, S. S., Ensign, S. A., Coppoc, L. G., Ludden, P. W., and Roberts, G. P., 1992. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system, J. Bacteriol. 174: 5284–5294.PubMedGoogle Scholar
  68. Krzycki, J. A., and Prince, R. C., 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate, Biochim. Biophys. Acta 1015: 53–60.CrossRefGoogle Scholar
  69. Krzycki, J. A., and Zeikus, J. G., 1984. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri, J. Bacteriol. 158: 231–237.PubMedGoogle Scholar
  70. Krzycki, J. A., Wolkin, R. H., and Zeikus, J. G., 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri, J. Bacteriol. 149: 247–254.PubMedGoogle Scholar
  71. Krzycki, J. A., Lehman, L. J., and Zeikus, J. G., 1985. Acetate catabolism by Met hanosarcina barkeri: Evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase, J. Bacteriol. 163: 1000–1006.PubMedGoogle Scholar
  72. Krzycki, J. A., Mortenson, L. E., and Prince, R. C., 1989. Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri, J. Biol. Chem. 264: 7217–7221.PubMedGoogle Scholar
  73. Kumar, M., and Ragsdale, S. W., 1992. Characterization of the CO binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum by infrared spectroscopy, J. Am. Chem. Soc. 114: 8713–8715.CrossRefGoogle Scholar
  74. Ladapo, J., and Whitman, W. B., 1990. Method for isolation of auxotrophs in the methanogenic archaebacteria: Role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis, Proc. Natl. Acad. Sci. USA 87: 5598–5602.CrossRefPubMedGoogle Scholar
  75. Länge, S., and Fuchs, G., 1987. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C, units and carbon monoxide, Eur. J. Biochem. 163: 147–154.CrossRefPubMedGoogle Scholar
  76. Länge, S., Scholtz, R., and Fuchs, G., 1989. Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. I. Characterization and metabolic function of the cellular tetrahydropterin, Arch. Microbiol. 151: 77–83.CrossRefGoogle Scholar
  77. Laufer, K., Eikmanns, B., Frimmer, U., and Thauer, R. K., 1987. Methanogenesis from acetate by Methanosarcina barkeri: Catalysis of acetate formation from methyl iodide, CO2, and H2 by the enzyme system involved, Z. Naturforsch. C 42: 360–372.Google Scholar
  78. Lebertz, H., Simon, H., Courtney, L. F., Benkovic, S. J., Zydowsky, L. D., Lee, K., and Floss, H. G., 1987. Stereochemistry of acetic acid formation from 5-methyltetrahydrofolate by Clostridium thermoaceticum, J. Am. Chem. Soc. 109: 3173–3174.CrossRefGoogle Scholar
  79. Lindahl, P. A., Münck, E., and Ragsdale, S. W., 1990a. CO dehydrogenase from Clostridium thermoaceticum. EPR and electrochemical studies in CO2 and argon atmospheres, J. Biol. Chem. 265: 3873–3879.PubMedGoogle Scholar
  80. Lindahl, P. A., Ragsdale, S. W., and Münck, E., 1990b. Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum, J. Biol. Chem. 265: 3880–3888.PubMedGoogle Scholar
  81. Ljungdahl, L. G., 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria, Annu. Rev. Microbiol. 40: 415–450.CrossRefPubMedGoogle Scholar
  82. Ljungdahl, L. G., and Wood, H. G., 1982. Acetate synthesis, in Vitamin B12 ( D. Dolphin, ed.), Wiley Interscience, New York, pp. 165–202.Google Scholar
  83. Lorowitz, W. H., and Bryant, M. P., 1984. Peptostreptococcus productus strain that grows rapidly with CO as the energy source, Appl. Environ. Microbiol. 47: 961–964.Google Scholar
  84. Lovely, D. R., and Ferry, J. G., 1985. Production and consumption of H2 during growth of Methanosarcina spp. on acetate, Appl. Environ. Microbiol. 49: 247–249.Google Scholar
  85. Lovely, D. R., White, R. H., and Ferry, J. G., 1984. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp., J. Bacteriol. 160: 52 1525.Google Scholar
  86. Lu, W.-P., and Ragsdale, S. W., 1991. Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide, J. Biol. Chem. 266: 3554–3564.PubMedGoogle Scholar
  87. Lu, W.-P., Harder, S. R., and Ragsdale, S. W., 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/ iron-sulfur protein from Clostridium thermoaceticum, J. Biol. Chem. 265: 3124–3133.PubMedGoogle Scholar
  88. Lu, Z., White, C., Rheingold, A. L., and Crabtree, R. H., 1993. Functional modeling of CO dehydrogenase: Catalytic reduction of methylviologen by CO/H2O with an N, O, S-ligated nickel catalyst, Angew. Chem. Int. Ed. Engl. 32: 9294.CrossRefGoogle Scholar
  89. Lundie, L. L., Jr., and Ferry, J. G., 1989. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransferase, J. Biol. Chem. 264: 18392–18396.PubMedGoogle Scholar
  90. Lupton, F. S., Conrad, R., and Zeikus, J. G., 1984. CO metabolism Desulfovibrio vulgaris strain Madison: Physiological function in the absence or presence of exogeneous substrates, FEMS Microbiol. Lett. 23: 263–268.CrossRefGoogle Scholar
  91. Lynd, L., Kerby, R., and Zeikus, J. G., 1982. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum, J. Bacteriol. 149: 255–263.PubMedGoogle Scholar
  92. Meyer, O., and Fiebig, K., 1985. Enzymes oxidizing carbon monoxide, in Gas Enzymology (H. Degn, R. P. Cox, and H. Toftlund, eds.), D. Reidel, Dordrecht, The Netherlands, pp. 147168.Google Scholar
  93. Meyer, O., and Schlegel, H. G., 1983. Biology of aerobic carbon monoxide oxidizing bacteria, Annu. Rev. Microbiol. 37: 277–310.CrossRefPubMedGoogle Scholar
  94. Morton, T. A., Runquist, J. A., Ragsdale, S. W., Shanmugasundaram, T., Wood, H. G., and Ljungdahl, L. G., 1991. The primary structure of the subunits of carbon monoxide dehydrogenase/acetyl coenzyme A synthase from Clostridium thermoaceticum, J. Biol. Chem. 266: 23824–23828.PubMedGoogle Scholar
  95. Nelson, M. J. K., and Ferry, J. G., 1984. Carbon monoxide-dependent methylcoenzyme M reductase in acetotrophic Methanosarcina spp., J. Bacteriol. 160: 526–532.PubMedGoogle Scholar
  96. Pezacka, E., and Wood, H. G., 1984a. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate, Arch. Microbiol. 137: 63–69.CrossRefPubMedGoogle Scholar
  97. Pezacka, E., and Wood, H. G., 1984b. Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria, Proc. Natl. Acad. Sci. USA 81: 6261–6265.CrossRefPubMedGoogle Scholar
  98. Pezacka, E., and Wood, H. G., 1986. The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase, J. Biol. Chem. 261: 1609–1615.PubMedGoogle Scholar
  99. Pezacka, E., and Wood, H. G., 1988. Acetyl-CoA pathway of autotrophic growth. Identification of the methyl-binding site of the CO dehydrogenase, J. Biol. Chem. 263: 16000–16006.PubMedGoogle Scholar
  100. Ragsdale, S. W., 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation, Crit. Rev. Biochem. Mol. Biol. 26: 261–300.CrossRefPubMedGoogle Scholar
  101. Ragsdale, S. W., and Wood, H. G., 1985. Acetate biosynthesis by acetogenic bacteria: Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis, J. Biol. Chem. 260: 3970–3977.PubMedGoogle Scholar
  102. Ragsdale, S. W., Ljungdahl, L. G., and DerVartanian, D. V., 1982. EPR evidence for nickel-substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum, Biochem. Biophys. Res. Commun. 108: 658–663.CrossRefPubMedGoogle Scholar
  103. Ragsdale, S. W., Clarke, J. E., Ljungdahl, L. G., Lundie, L. L., and Drake, H. L., 1983a. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein, J. Biol. Chem. 258: 2364–2369.PubMedGoogle Scholar
  104. Ragsdale, S. W., Ljungdahl, L. G., and DerVartanian, D. V., 1983b. 13C and 6’Ni isotope substitutions confirm the presence of a nickel (III)-carbon species in acetogenic CO dehydrogenase, Biochem. Biophys. Res. Commun. 115: 658–665.Google Scholar
  105. Ragsdale, S. W., Ljungdahl, L. G., and DerVartanian, D. V., 1983e. Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme, J. Bacteriol. 155: 1224–1237.PubMedGoogle Scholar
  106. Ragsdale, S. W., Wood, H. G., and Antholine, W. E., 1985. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum, Proc. Natl. Acad. Sci. USA 82: 6811–6814.CrossRefPubMedGoogle Scholar
  107. Ragsdale, S. W., Lindahl, P. A., and Münck, E., 1987. Mössbauer, EPR, and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl coenzyme A by Clostridium thermoaceticum, J. Biol. Chem. 262: 14289–14297.PubMedGoogle Scholar
  108. Ragsdale, S. W., Wood, H. G., Morton, T. A., Ljungdahl, L. G., and DerVartanian, D. V., 1988. Nickel in CO dehydrogenase, in The Bioinorganic Chemistry of Nickel ( J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 311–332.Google Scholar
  109. Ragsdale, S. W., Baur, J. R., Gorst, C. M., Harder, S. R., Lu, W.-P., Roberts, D. L., Rundquist, J. A., and Schiau, I., 1990. The acetyl-CoA synthase from Clostridium thermoaceticum: From gene cluster to active-site metal clusters, FEMS Microbiol. Rev. 87: 397–402.CrossRefGoogle Scholar
  110. Ramer, S. E., Raybuck, S. A., Orme-Johnson, W. H., and Walsh, C. T., 1989. Kinetic characterization of the [3–32P]coenzyme A/acetyl coenzyme A exchange catalyzed by a three-subunit form of the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum, Biochemistry 28: 4675–4680.CrossRefPubMedGoogle Scholar
  111. Raybuck, S. A., Bastian, N. R., Zydowsky, L. D., Kobayashi, K., Floss, H., Orme-Johnson, W. H., and Walsh, C. T., 1987. Nickel-containing CO dehydrogenase catalyzes reversible decarbonylation of acetyl CoA with retention of stereochemistry at the methyl carbon, J. Am. Chem. Soc. 109: 3171–3173.CrossRefGoogle Scholar
  112. Raybuck, S. A., Bastian, N. R., Orme-Johnson, W. H., and Walsh, C. T., 1988. Kinetic characterization of the carbon monoxide-acetyl-CoA exchange activity of the acetyl-CoA synthesizing CO dehydrogenase from Clostridium thermoaceticum, Biochemistry 27: 7698–7702.CrossRefPubMedGoogle Scholar
  113. Raybuck, S. A., Ramer, S. E., Abbanat, D. R., Peters, J. W., Orme-Johnson, W. H., Ferry, J. G., and Walsh, C. T., 1991. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila, J. Bacteriol. 173: 929–932.PubMedGoogle Scholar
  114. Roberts, D. L., James-Hagstrom, J. E., Garvin, D. K., Gorst, C. M., Runquist, J. A., Baur, J. R., Haase, F. C., and Ragsdale, S. W., 1989. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase, Proc. Natl. Acad. Sei. USA 86: 32–36.CrossRefGoogle Scholar
  115. Roberts, J. R., Lu, W.-L., and Ragsdale, S. W., 1992. Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: Attainment of in vivo rates and identification of rate-limiting steps, J. Bacteriol. 174: 4667–4676.PubMedGoogle Scholar
  116. Rühlemann, M., Ziegler, K., Stupperich, E., and Fuchs, G., 1985. Detection of acetyl coenzyme A as an early CO2 assimilation intermediate in Methanobacterium, Arch. Microbiol. 141: 399–406.CrossRefGoogle Scholar
  117. Schauder, R., Eikmanns, B., Thauer, R. K., Widdel, F., and Fuchs, G., 1986. Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle, Arch. Microbiol. 145: 162–172.CrossRefGoogle Scholar
  118. Schauder, R., Preuß, A., Jetten, M., and Fuchs, G., 1989. Oxidative and reductive acetyl CoA/ carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase, Arch. Microbiol. 151: 84–89.CrossRefGoogle Scholar
  119. Shanmugasundaram, T., and Wood, H. G., 1992. Interaction of ferredoxin with carbon monoxide dehydrogenase from Clostridium thermoaceticum, J. Biol. Chem. 267: 897–900.PubMedGoogle Scholar
  120. Shanmugasundaram, T., Kumar, G. K., and Wood, H. G., 1988a. Involvement of tryptophan residues at the coenzyme A binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum, Biochemistry 27: 6499–6503.CrossRefPubMedGoogle Scholar
  121. Shanmugasundaram, T., Ragsdale, S. W., and Wood, H. G., 1988b. Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium, Acetobacterium woodii, Biofactors 1:147–152.Google Scholar
  122. Shanmugasundaram, T., Kumar, G. K., Shenoy, B. C., and Wood, H. G., 1989. Chemical modification of the functional arginine residues of carbon monoxide dehydrogenase from Clostridium thermoaceticum, Biochemistry 28: 7112–7116.CrossRefPubMedGoogle Scholar
  123. Shin, W., and Lindahl, P. A., 1992a. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum, Biochemistry 31: 12870–12875.CrossRefPubMedGoogle Scholar
  124. Shin, W., and Lindahl, P. A., 1992b. Discovery of a labile nickel ion required for CO/acetyl-CoA exchange activity in the NiFe complex of carbon monoxide dehydrogenase from Clostridium thermoaceticum, J. Am. Chem. Soc. 114: 9718–9719.CrossRefGoogle Scholar
  125. Shin, W., and Lindahl, P. A., 1993. Low spin quantitation of NiFeC EPR signal from carbon monoxide dehydrogenase is not due to damage incurred during protein purification, Biochim. Biophys. Acta 1161: 317–322.CrossRefPubMedGoogle Scholar
  126. Shin, W., Stafford, P. R., and Lindahl, P. A., 1992. Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum, Biochemistry 31: 6003–6011.CrossRefPubMedGoogle Scholar
  127. Smith, M. J., Lequerica, J. L., and Hart, M. R., 1985. Inhibition of methanogenesis and carbon metabolism in Methanosarcina sp. by cyanide, J. Bacteriol. 162: 67–71.PubMedGoogle Scholar
  128. Smith, E. T., Ensign, S. A., Ludden, P. W., and Feinberg, B. A., 1992. Direct electrochemical studies of hydrogenase and CO dehydrogenase, Biochem. J. 285: 181–185.PubMedGoogle Scholar
  129. Stavropoulos, P., Carné, M., Muetterties, M. C., and Holm, R. H., 1990. Reaction sequence related to that of carbon monoxide dehydrogenase (acetyl coenzyme A synthase): Thioester formation mediated at structurally defined nickel centers, J. Am. Chem. Soc. 112: 53855387.Google Scholar
  130. Stavropoulos, P., Muetterties, M. C., Carrié, M., and Holm, R. H., 1991. Structure and reaction chemistry of nickel complexes in relation to carbon monoxide dehydrogenase: A reaction system simulating acetyl-coenzyme A synthase activity, J. Am. Chem. Soc. 113: 8485–8492.CrossRefGoogle Scholar
  131. Stephens, P. J., McKenna, M.-C., Ensign, S. A., Bonam, D., and Ludden, P. W., 1989. Identification of a Ni-and Fe-containing cluster in Rhodospirillum rubrum carbon monoxide dehydrogenase, J. Biol. Chem. 264: 16347–16350.PubMedGoogle Scholar
  132. Stupperich, E., and Fuchs, G., 1983. Autotrophic acetyl coenzyme A synthesis in vitro from two CO2 in Methanobacterium, FEBS Leu. 156: 345–348.CrossRefGoogle Scholar
  133. Stupperich, E., and Fuchs, G., I 984a. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. I. Properties of in vivo system, Arch. Microbiol. 139: 8–13.Google Scholar
  134. Stupperich, E., and Fuchs, G., I 984b. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. II. Evidence for different origins of acetate carbon atoms, Arch. Microbiol. 139: 14–20.Google Scholar
  135. Stupperich, E., Hammel, K. E., Fuchs, G., and Thauer, R. K., 1983. Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium, FEBS Lett. 152: 21–23.CrossRefPubMedGoogle Scholar
  136. Tan, G. O., Ensign, S. A., Ciurli, S., Scott, M. J., Hedman, B., Holm, R. H., Ludden, P. A., Korszun, Z. R., Stephens, P. J., and Hodgson, K. 0., 1992. On the structure of the nickel/ iron/sulfur center of the carbon monoxide dehydrogenase from Rhodospirillum rubrum: An X-ray absorption spectroscopic study, Proc. Natl. Acad. Sci. USA 89: 4427–4431.Google Scholar
  137. Terlesky, K. C., and Ferry, J. G., 1988. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila, J. Biol. Chem. 263: 4075–4079.PubMedGoogle Scholar
  138. Terlesky, K. C., Nelson, M. J. K., and Ferry, J. G., 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila, J. Bacteriol. 168: 1053–1058.PubMedGoogle Scholar
  139. Terlesky, K. C., Barber, M. J., Aceti, D. J., and Ferry, J. G., 1987. EPR properties of the Ni-FeC center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate, J. Biol. Chem. 262: 15392–15395.PubMedGoogle Scholar
  140. Uffen, R. L., 1976. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy source, Proc. Natl. Acad. Sci. USA 73: 3298–3302.CrossRefPubMedGoogle Scholar
  141. Uffen, R. L., 1981. Metabolism of carbon monoxide, Enzyme Microb. Technol. 3: 197–206.CrossRefGoogle Scholar
  142. Uffen, R. L., 1983. Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: Cell growth and properties of the oxidation system, J. Bacteriol. 155: 956–965.PubMedGoogle Scholar
  143. Wakin, B. T., and Uffen, R. L., 1983. Membrane association of the carbon monoxide oxidation system in Rhodopseudomonas gelatinosa, J. Bacteriol. 153: 571–573.Google Scholar
  144. Westermann, P., Ahring, B. K., and Mah, R. A., 1989. Acetate production by methanogenic bacteria, Appl. Environ. Microbiol. 55: 2257–2261.PubMedGoogle Scholar
  145. Wood, H. G., and Ljungdahl, L. G., 1991. Autotrophic character of the acetogenic bacteria, in Variations in Autotrophic Life, Academic Press, New York pp. 201–250.Google Scholar
  146. Wood, H. G., Ragsdale, S. W., and Pezacka, E., 1 986a. A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen, Biochem. lnt. 12: 421–440.Google Scholar
  147. Wood, H. G., Ragsdale, S. W., and Pezacka, E., 1986b. The acetyl-CoA pathway: A newly discovered pathway of autotrophic growth, Trends Biochem. Sci. 11:14–18.Google Scholar
  148. Wood, H. G., Ragsdale, S. W., and Pezacka, E., 1986c. The acetyl-CoA pathway of autotrophic bacteria, FEMS Microbiol. Rev. 39: 345–362.CrossRefGoogle Scholar
  149. Yagi, T., 1958. Enzymatic oxidation of carbon monoxide, Biochim. Biophys. Acta 30:194–195. Yang, H., Daniel, S. L., Hsu, T., and Drake, H. L., 1989. Nickel transport by the thermophilic acetogen Acetogenium kivui, Appl. Environ. Microbiol. 55: 1078–1081.Google Scholar
  150. Zeikus, J. G., Kerby, R., and Krzycki, J. A., 1985. Single-carbon chemistry of acetogenic and methanogenic bacteria, Science 227: 1167–1173.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert P. Hausinger
    • 1
  1. 1.Departments of Microbiology and BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations