Advertisement

Hydrogenase

  • Robert P. Hausinger
Part of the Biochemistry of the Elements book series (BOTE, volume 12)

Abstract

Many microorganisms possess hydrogenase activity that catalyzes the reversible activation of hydrogen according to the following reaction:

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Flavin Adenine Dinucleotide Magnetic Circular Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. W. W., 1990. The structure and mechanism of iron-hydrogenases, Biochim. Biophys. Acta 1020: 115–145.PubMedGoogle Scholar
  2. Adams, M. W. W., Mortenson, L. E., and Chen, J.-S., 1981. Hydrogenase, Biochim. Biophys. Acta 594: 105–176.Google Scholar
  3. Adams, M. W. W., Jin, S.-L. C., Chen, J.-S., and Mortenson, L. E., 1986. The redox properties and activation of the F420-non-reactive hydrogenase of Methanobacterium formicicum, Biochim. Biophys. Acta 869: 37–47.Google Scholar
  4. Adams, M. W. W., Eccleston, E. C., and Howard, J. B., 1989. Iron—sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurii, Proc. Natl. Acad. Sci. USA 86: 4932–4936.Google Scholar
  5. Aggag, M., and Schlegel, H. G., 1974. Studies on a gram-positive hydrogen bacterium, Nocardia opaca 1 b. III. Purification, stability and some properties of the soluble hydrogen dehydrogenase, Arch. Microbiol. 100: 25–39.PubMedGoogle Scholar
  6. Albracht, S. P. J., Graf, E.-G., and Thauer, R. K., 1982. The EPR properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum, FEBS Lett. 140: 311–313.PubMedGoogle Scholar
  7. Albracht, S. P. J., Kalkman, M. L., and Slater, E. C., 1983. Magnetic interaction of nickel (IIl) and the iron-sulfur cluster in hydrogenase from Clostridium vinosum, Biochim. Biophys. Acta 724: 309–316.Google Scholar
  8. Albracht, S. P. J., van der Zwaan, J. W., and Fontijn, R. D., 1984. EPR spectrum at 4, 9, and 35 GHz of hydrogenase from Chromatium vinosum. Direct evidence for spin-spin interaction between Ni(III) and the iron-sulfur cluster, Biochim. Biophys. Acta 766: 245–258.Google Scholar
  9. Albracht, S. P. J., Kroger, A., van der Zwaan, J. W., Unden, G., Böcher, R., Mell, H., and Fontijn, R. D., 1986. Direct evidence for sulfur as a ligand to nickel in hydrogenase: An EPR study of the enzyme from Wolinella succinogenes enriched in 335, Biochim. Biophys. Acta 874: 116–127.Google Scholar
  10. Alex, L. A., Reeve, J. N., Orme-Johnson, W. H., and Walsh, C. T., 1990. Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum, Biochemistry 29: 7237–7244.PubMedGoogle Scholar
  11. Almon, H., and Böger, P., 1984. Nickel dependent uptake hydrogenase activity in the blue-green alga Anabaena variabilis, Z. Naturforsch., C 39: 90–92.Google Scholar
  12. Arp, D. J., 1985. Rhizobium japonicum hydrogenase: Purification to homogeneity from soybean nodules, and molecular characterization, Arch. Biochem. Biophys. 237: 504–512.Google Scholar
  13. Asso, M., Guigliarelli, B., Yagi, T., and Bertrand, P., 1992. EPR and redox properties of Desulfovibrio vulgaris Miyazaki hydrogenase: Comparison with the Ni-Fe enzyme from Desulfovibrio gigas, Biochim. Biophys. Acta 1122: 50–56.PubMedGoogle Scholar
  14. Bagyinka, C., Whitehead, J. P., and Maroney, M. J., 1993. An X-ray absorption spectroscopic study of nickel redox chemistry in hydrogenase, J. Am. Chem. Soc. 115: 3576–3585.Google Scholar
  15. Baidya, N., Olmstead, M., and Mascharak, P. K., 1991. Pentacoordinated nickel(II) complexes with thiolato ligation: Synthetic strategy, structures, and properties, Inorg. Chem. 30: 929937.Google Scholar
  16. Baidya, N., Noll, B. C., Olmstead, M. M., and Mascharak, P. K., 1992a. Nickel(II) complexes with the [NiN,Sey] chromophore in different coordination geometries: Search for a model of the active site of [NiFeSe] hydrogenases, Inorg. Chem. 31: 2999–3000.Google Scholar
  17. Baidya, N., Olmstead, M. M., Whitehead, J. P., Bagyinka, C., Maroney, M. J., and Mascharak, P. K., 1992b. X-ray absorption spectra of nickel complexes with N3S2 chromophores and spectroscopic studies on H- and CO binding at these nickel centers: Relevance to the reactivity of the nickel site(s) in [NiFe] hydrogenases, Inorg. Chem. 31: 3612–3619.Google Scholar
  18. Baidya, N., Olmstead, M. M., and Mascharak, P. K., 1993. A mononuclear nickel(1l) complex with [NiN3S2] chromophore that readily affords the Ni(I) and Ni(I1I) analogues: Probe into the redox behavior of the nickel site in [FeNi] hydrogenases, J. Am. Chem. Soc. 114: 96669668.Google Scholar
  19. Ballantine, S. P., and Boxer, D. H., 1986. Isolation and characterization of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli, Eur. J. Biochem. 156: 277–284.PubMedGoogle Scholar
  20. Baron, S. F., Brown, D. P., and Ferry, J. G., 1987. Locations of the hydrogenases of Methanobacterium formicicum after subcellular fractionation of cell extract, J. Bacteriol. 169: 38233825.Google Scholar
  21. Baron, S. F., Williams, D. S., May, H. D., Patel, P. S., Aldrich, H. C., and Ferry, J. G., 1989. Immunogold localization of coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase in Methanobacterium formicicum, Arch. Microbiol. 151:307–313.Google Scholar
  22. Barraquio, W. L., and Knowles, R., 1989. Beneficial effects of nickel on Pseudomonas saccharophila under nitrogen-limited chemolithotrophic conditions, Appl. Environ. Microbiol. 55: 31973201.Google Scholar
  23. Bartha, R., and Ordal, E. J., 1965. Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains, J. Bacteriol. 89: 1015–1019.PubMedGoogle Scholar
  24. Bastian, N. R., Wink, D. A., Wackett, L. P., Livingston, D. J., Jordan, L. M., Fox, J. Orme-Johnson, W. H., and Walsh, C. A., 1988. Hydrogenases of Methanobacterium thermoautotrophicum strain AH, in The Bioinorganic Chemistry of Nickel (J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 227–247.Google Scholar
  25. Berlier, Y. M., Fauque, G., Lespinat, P. A., and LeGall, J., 1982. Activation, reduction and role of proton-deuterium exchange reaction of the periplasmic hydrogenase from Desulfovibrio gigas in relation with the role of cytochrome c 3, FEBS Lett. 140: 185–188.PubMedGoogle Scholar
  26. Böhm, R., Sauter, M., and Böck, A., 1990. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components, Mol. Microbiol. 4: 231–243.PubMedGoogle Scholar
  27. Bonam, D., McKenna, M. C., Stephens, P. J., and Ludden, P. W., 1988. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: In vivo and in vitro activation by exogenous nickel, Proc. Natl. Acad. Sci. USA 85: 31–35.PubMedGoogle Scholar
  28. Boursier, P., Hanus, F. J., Becker, M. M., Russell, S. A., and Evans, H. J., 1988. Selenium increases hydrogenase expression in autotrophically cultured Bradyrhizobium japonicum and is a constituent of the purified enzyme, J. Bacteriol. 170: 5594–5600.PubMedGoogle Scholar
  29. Bryant, F. O., and Adams, M. W. W., 1989. Characterization of hydrogenase from the hyperther-Google Scholar
  30. mophilic archaebacterium, Pyrococcus furiosus, J. Biol. Chem. 264:5070–5079.Google Scholar
  31. Cammack, R., Patil, D., Aguirre, R., and Hatchikian, E. C., 1982. Redox properties of the ESRdetectable nickel in hydrogenase from Desulfovibrio gigas, FEBS Lett. 142: 289–292.Google Scholar
  32. Cammack, R., Fernandez, V. M., and Schneider, K., 1986. Activation and active-sites of nickelcontaining hydrogenases, Biochimie 68: 85–91.PubMedGoogle Scholar
  33. Cammack, R., Patil, D. S., Hatchikian, E. C., and Fernandez, V. M., 1987. Nickel and iron-sulphur centres in Desulfovibrio gigas hydrogenase: ESR spectra, redox properties and interactions, Biochim. Biophys. Acta 912: 98–109.Google Scholar
  34. Cammack, R., Fernandez, V. M., and Schneider, K., 1988. Nickel in hydrogenases from sulfate-reducing, photosynthetic, and hydrogen-oxidizing bacteria, in The Bioinorganic Chemistry of Nickel ( J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 167–190.Google Scholar
  35. Cammack, R., Bagyinka, C., and Kovacs, K. L., 1989a. Spectroscopic characterization of the nickel and iron-sulphur clusters of hydrogenase from the purple photosynthetic bacterium Thiocapsa roseopersicina. 1. Electron spin resonance spectroscopy, Eur. J. Biochem. 182: 357–362.PubMedGoogle Scholar
  36. Cammack, R., Kovacs, K. L., McCracken, J., and Peisach, J., 1989b. Spectroscopic characterization of the nickel and iron-sulphur clusters of hydrogenase from the purple photosynthetic bacterium Thiocapsa roseopersicina. 2. Electron spin-echo spectroscopy, Eur. J. Biochem. 182: 363–366.PubMedGoogle Scholar
  37. Chapman, A., Cammack, R., Hatchikian, E. C., McCracken, J., and Peisach, J., 1988. A pulsed EPR study of redox-dependent hyperfine interactions for the nickel centre of Desulfovibrio gigas hydrogenase, FEBS Lett. 242: 134–138.PubMedGoogle Scholar
  38. Chaudhuri, A., and Krasna, A. I., 1987. Isolation of genes required for hydrogenase synthesis in Escherichia coli, J. Gen. Microbiol. 133: 3289–3298.PubMedGoogle Scholar
  39. Chen, J. C., and Mortenson, L. E., 1992. Identification of six open reading frames from a region of the Azotobacter vinelandü genome likely involved in dihydrogen metabolism, Biochim. Biophys. Acta 1131:199–202.Google Scholar
  40. Chen, Y.-P., and Yoch, D. C, 1987. Regulation of two nickel-requiring (inducible and constitutive) hydrogenases and their coupling to nitrogenase in Methylosinus trichosporium OB3b, J. Bacteriol. 169: 4778–4783.PubMedGoogle Scholar
  41. Choquet, C. G., and Sprott, G. D., 1991. Metal chelate affinity chromatography for the purification of the F420-reducing (Ni,Fe) hydrogenase of Methanospirillum hungatei, J. Microbiol. Methods 13: 161–169.Google Scholar
  42. Colbeau, A., and Vignais, P. M., 1983. The membrane-bound hydrogenase of Rhodopseudomonas capsulatus is inducible and contains nickel, Biochim. Biophys. Acta 748: 128–138.Google Scholar
  43. Colbeau, A., Chabert, J., and Vignais, P. M., 1983. Purification, molecular properties and localization in the membrane of the hydrogenase of Rhodopseudomonas capsulata, Biochim. Biophys. Acta 748: 116–127.Google Scholar
  44. Colbeau, A., Richaud, P., Toussaint, B., Caballero, F. J., Elster, C., Delphin, C., Smith, R. L., Chabert, J., and Vignais, P. M., 1993. Organization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus. Sequence analysis and identification of two hyp regulatory mutants, Mol. Microbiol. 8: 15–29.PubMedGoogle Scholar
  45. Colpas, G. J., Maroney, M. J., Bagyinka, C., Kumar, M., Willis, W. S., Suib, S. L., Baidya, N., and Mascharak, P. K., 1991. X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases, Inorg. Chem. 30: 920–928.Google Scholar
  46. Coremans, J. M. C. C., van der Zwaan, J. W., and Albracht, S. P. J., 1989. Redox behaviour of nickel in hydrogenase from Methanobacterium thermoautotrophicum (strain Marburg). Correlation between the nickel valence state and enzyme activity, Biochim. Biophys. Acta 997: 256–267.Google Scholar
  47. Coremans, J. M. C. C., van Garderen, C. J., and Albracht, S. P. J., 1992a. On the redox equilibrium between H2 and hydrogenase, Biochim. Biophys. Acta 1119: 148–156.PubMedGoogle Scholar
  48. Coremans, J. M. C. C., van der Zwaan, J. W., and Albracht, S. P. J., 1992b. Distinct redox behaviour of prosthetic groups in ready and unready hydrogenase from Chromatium vinosum, Biochim. Biophys. Acta 1119:157–168.Google Scholar
  49. Czechowski, M. H., He, S. H., Nacro, M. DerVartanian, D. V., Peck, H. D., Jr., and LeGall, J., 1984. A cytoplasmic nickel-iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. n., a new species of sulfate reducing bacterium, Biochem. Biophys. Res. Commun. 125: 1025–1032.PubMedGoogle Scholar
  50. Daday, A., and Smith, G. D., 1983. The effect of nickel on the hydrogen metabolism of the cyanobacterium Anabaena cylindrica, FEMS Microbiol. Lett. 20: 327–330.Google Scholar
  51. Daday, A., MacKerras, A. H., and Smith, G. D., 1985. The effect of nickel on hydrogen metabolism and nitrogen fixation in the cyanobacterium Anabaena cylindrica, J. Gen. Microbiol. 131: 231–238.Google Scholar
  52. Deckers, H. M., Wilson, F. R., and Voordouw, G., 1990. Cloning and sequencing of a [NiFe] hydrogenase operon from Desulfi vibrio vulgaris Miyazaki F, J. Gen. Microbiol. 136: 20212028.Google Scholar
  53. Deppenmeier, U., Blaut, M., Schmidt, B., and Gottschalk, G., 1992. Purification and properties of a F420-nonreactive, membrane-bound hydrogenase from Methanosarcina strain GöI, Arch. Microbiol. 157: 505–511.PubMedGoogle Scholar
  54. Dernedde, J., Eitinger, M., and Friedrich, B., 1993. Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H 16, Arch. Microbiol. 159: 545–553.PubMedGoogle Scholar
  55. Doyle, C. M., and Arp, D. J., 1988. Nickel affects expression of the nickel-containing hydrogenase of Alcaligenes tutus, J. Bacteriol. 170: 3891–3896.PubMedGoogle Scholar
  56. Dross, F., Geisler, V., Lenger, R., Theis, F., Kraft, T., Fahrenholz, F., Kojro, E., Duchene, A., Tripier, D., Juvenal, K., and Kröger, A., 1992. The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes, Eur. J. Biochem. 206: 93–102.PubMedGoogle Scholar
  57. Drutschmann, M., and Klemme, J.-H., 1985. Sulfide-repressed, membrane-bound hydrogenase in the thermophilic facultative phototroph, Chloroflexus aurantiacus, FEMS Microbiol. Lett. 28: 231–235.Google Scholar
  58. Du, L., Stejskal, F., and Tibelius, K. H., 1992. Characterization of two genes (hupD and hupE) required for hydrogenase activity in Azotobacter chroococcum, FEMS Microbiol. Lett. 96: 93–102.Google Scholar
  59. Eberz, G., and Friedrich, B., 1991. Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus, J. Bacterial. 173: 1845–1854.Google Scholar
  60. Eberz, G., Eitinger, T., and Friedrich, B., 1989. Genetic determinants of a nickel-specific transport system are part of the plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus, J. Bacterial. 171:1340–1345.Google Scholar
  61. Eidsness, M. K., Scott, R. A., Prickril, B. C., DerVartanian, D. V., LeGall, J., Moura, I., Moura, J. J. G., and Peck, H. D., Jr., 1989. Evidence for selenocysteine coordination to the active site nickel in the [NiFeSe]hydrogenases from Desulfovibrio baculatus, Proc. Natl. Acad. Sci. USA 86: 147–151.PubMedGoogle Scholar
  62. Eitinger, T., and Friedrich, B., 1991. Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus, J. Biol. Chem. 266: 32223227.Google Scholar
  63. Ewart, G. D., Reed, K. C., and Smith, G. D., 1990. Soluble hydrogenase of Anabaena cylindrica. Cloning and sequencing of a potential gene encoding the tritium exchange subunit, Eur. J. Biochem. 187: 215–223.PubMedGoogle Scholar
  64. Fan, C., Teixeira, M., Moura, J., Moura, I., Huynh, B.-H., Le Gall, J., Peck, H. D., Jr., and Hoffman, B. M., 1991. Detection and characterization of exchangeable protons bound to the hydrogen-activation nickel site of Desulfovibrio gigas hydrogenase: A 1H and 2H Q-band ENDOR study, J. Am. Chem. Soc. 113: 20–24.Google Scholar
  65. Fauque, G., Teixeira, M., Moura, I., Lespinat, P. A., Xavier, A. V., DerVartanian, D. V., Peck, H. D., Jr., LeGall, J., and Moura, J. G., 1984. Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800), Eur. J. Biochem. 142: 2128.Google Scholar
  66. Fauque, G., Peck, H. D., Jr., Moura, J. J. G., Huynh, B. H., Berlier, Y., DerVartanian, D. V., Teixeira, M., Przybyla, A. E., Lespinat, P. A., Moura, I., and LeGall, J., 1988. Three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio, FEMS Microbial. Rev. 54: 299–344.Google Scholar
  67. Fauque, G., Czechowski, M., Berlier, Y. M., Lespinat, P. A., LeGall, J., and Moura, J. J. G., 1992. Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium, Biochem. Biophys. Res. Commun. 184: 1256–1260.PubMedGoogle Scholar
  68. Fernandez, V. M., Aguirre, R., and Hatchikian, E. C., 1984. Reductive activation and redox properties of hydrogenase from Desulfovibrio gigas, Biochim. Biophys. Acta 790: 1–7.Google Scholar
  69. Fernandez, V. M., Hatchikian, E. C., and Cammack, R., 1985. Properties and reactivation of two different deactivated forms of Desulfovibrio gigas hydrogenase, Biochim. Biophys. Acta 832: 69–79.Google Scholar
  70. Fernandez, V. M., Hatchikian, E. C., Patil, D. S., and Cammack, R., 1986. ESR-detectable nickel and iron-sulfur centres in relation to the reversible activation of Desulfovibrio gigas hydrogenase, Biochim. Biophys. Acta 883: 145–154.Google Scholar
  71. Fiebig, K., and Friedrich, B., 1989. Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro), Eur. J. Biochem. 184: 79–88.PubMedGoogle Scholar
  72. Ford, C. M., Garg, N., Garg, R. P., Tibelius, K. H., Yates, M. G., Arp, D. J., and Seefeldt, L. C., 1990. The identification, characterization, sequencing and mutagenesis of the genes (hupSL) encoding the small and large subunits of the H2-uptake hydrogenase of Azotobacter chroococcum, Mol. Microbiol. 4: 999–1008.PubMedGoogle Scholar
  73. Fox, J. A., Livingston, D. J., Orme-Johnson, W. H., and Walsh, C. T., 1987. 8-Hydroxy-5deazatlavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization, Biochemistry 26: 4219–4227.Google Scholar
  74. Fox, S., Wang, Y., Silver, A., and Miller, M., 1990. Viability of the [Ni°1(SR)4]- unit in classical coordination compounds and in the nickel-sulfur center of hydrogenases, J. Am. Chem. Soc. 112: 3218–3220.Google Scholar
  75. Friedrich, B., 1990. The plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus, FEMS Microbiol. Rev. 87: 425–430.Google Scholar
  76. Friedrich, B., Heine, E., Finck, A., and Friedrich, C. G., 1981. Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus, J. Bacteriol. 145: 1144–1149.PubMedGoogle Scholar
  77. Friedrich, C. G., Schneider, K., and Friedrich, B., 1982. Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus, J. Bacteriol. 152: 42–48.PubMedGoogle Scholar
  78. Friedrich, C. G., Suetin, S., and Lohmeyer, M., 1984. Nickel and iron incorporation into soluble hydrogenase of Alcaligenes eutrophus, Arch. Microbiol. 140: 206–211.Google Scholar
  79. Fu, C., and Maier, R. J., 1991. Identification of a locus within the hydrogenase gene cluster involved in intracellular nickel metabolism in Bradyrhizobium japonicum, Appl. Environ. Microbiol. 57: 3502–3510.PubMedGoogle Scholar
  80. Fu, C., and Maier, R., 1992. Nickel-dependent reconstitution of hydrogenase apoprotein in Bradyrhizobium japonicum Hup` mutants and direct evidence for a nickel metabolism locus involved in nickel incorporation into the enzyme, Arch. Microbiol. 157: 493–498.PubMedGoogle Scholar
  81. Fu, C., and Maier, R. J., 1993. A genetic region downstream of the hydrogenase structural genes of Bradyrhizobium japonicum that is required for nydrogenase processing, J. Bacteriol. 175: 295–298.PubMedGoogle Scholar
  82. Gogotov, I. N., 1986. Hydrogenases of phototrophic microorganisms, Biochimie 68: 181–187.PubMedGoogle Scholar
  83. Gollin, D. J., Mortenson, L. E., and Robson, R. L., 1992. Carboxyl-terminal processing may be essential for production of active NiFe hydrogenase in Azotobacter vinelandii, FEBS Lett. 309: 371–375.PubMedGoogle Scholar
  84. Graf, E.-G., and Thauer, R. K., 1981. Hydrogenase from Methanobacterium thermoautotrophicum, a nickel-containing enzyme, FEBS Lett. 136: 165–169.Google Scholar
  85. Halboth, S., and Klein, A., 1992. Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types, Mol. Gen. Genet. 233: 217–224.Google Scholar
  86. Harker, A. R., Xu, L.-S., Hanus, F. J., and Evans, H. J., 1984. Some properties of the nickel-containing hydrogenase of chemolithotrophically grown Rhizobium japonicum, J. Bacteriol. 159: 850–856.PubMedGoogle Scholar
  87. Hatchikian, E. C., Bruschi, M., and LeGall, J., 1978. Characterization of the periplasmic hy- drogenase from Desulfovibrio gigas, Biochem. Biophys. Res. Commun. 82: 451–461.PubMedGoogle Scholar
  88. Hatchikian, C. E., Traore, A. S., Fernandez, V. M., and Cammack, R., 1990. Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans, Eur. J. Biochem. 187: 635–643.PubMedGoogle Scholar
  89. He, S. H., Teixeira, M., LeGall, J., Patil, D. S., Moura, I., Moura, J. J. G., DerVartanian, D. V., Huynh, B. H., and Peck, H. D., Jr., 1989. EPR studies with “Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel, J. Biol. Chem. 264: 2678–2682.PubMedGoogle Scholar
  90. Heiden, S., Hedderich, R., Setzke, E., and Thauer, R. K., 1993. Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri, Eur. J. Biochem. 213: 529–535.PubMedGoogle Scholar
  91. Hidalgo, E., Leyva, A., and Ruiz-Argüeso, T., 1990. Nucleotide sequence of the hydrogenase structural genes from Rhizobium leguminosarum, Plant Mol. Biol. 15: 367–370.PubMedGoogle Scholar
  92. Hidalgo, E., Palacios, J. M., Murillo, J., and Ruiz-Argüeso, T., 1992. Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum by. viciae, J. Bacteriol. 174: 4130–4139.PubMedGoogle Scholar
  93. Hornhardt, S., Schneider, K., and Schlegel, H. G., 1986. Characterization of a native subunit of the NAD-linked hydrogenase isolated from a mutant Alcaligenes eutrophus H16, Biochimie 68: 15–24.PubMedGoogle Scholar
  94. Hsu, J.-C., Beilstein, M. A., Whanger, P., and Evans, H. J., 1990. Investigation of the form of selenium in the hydrogenase from chemolithotrophically cultured Bradyrhizobium japonicum, Arch. Microbiol. 154: 215–220.Google Scholar
  95. Huynh, B. H., Patil, D. S., Moura, I., Teixeira, M., Moura, J. J. G., DerVartanian, D. V., Czechowski, M. H., Prickril, B. C., Peck, H. D., Jr., and LeGall, J., 1987. On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mössbauer and redox titration studies, J. Biol. Chem. 262: 795–800.PubMedGoogle Scholar
  96. Jacobi, A., Rossman, R., and Böck, A., 1992. The hyp operon gene products are required for maturation of catalytically active hydrogenase isoenzymes in Escherichia coli, Arch. Microbiol. 158: 444–451.PubMedGoogle Scholar
  97. Jin, S.-L. C., Blanchard, D. K., and Chen, J.-S., 1983. Two hydrogenases with distinct electron carrier specificity and subunit composition in Methanobacterium formicicum, Biochim. Biophys. Acta 748: 8–20.Google Scholar
  98. Johannssen, W., Gerberding, H., Rohde, M., Zaborosch, C., and Mayer, F., 1991. Structural aspects of the soluble NAD-dependent hydrogenase isolated from Alcaligenes eutrophus H 16 and from Nocardia opaca lb, Arch. Microbiol. 155: 303–308.Google Scholar
  99. Johnson, M. K., Zambrano, I. C., Czechowski, M. H., Peck, H. D., Jr., DerVartanian, D. V., and LeGall, J., 1985. Low temperature magnetic circular dichroism spectroscopy as a probe for the optical transitions of paramagnetic nickel in hydrogenase, Biochem. Biophys. Res. Commun. 128: 220–225.PubMedGoogle Scholar
  100. Johnson, M. K., Zambrano, I. C., Czechowski, M. H., Peck, H. D., Jr., DerVartanian, D. V., and LeGall, J., 1986. Magnetic circular dichroism and electron paramagnetic resonance studies of nickel-containing hydrogenases, in Frontiers in Bioinorganic Chemistry ( A. V. Xavier, ed.), VCH Publishers, New York, pp. 36–44.Google Scholar
  101. Kemner, J. M., 1993. Characterization of Electron Transfer Activities Associated with Acetate Dependent Methanogenesis by Methanosarcina barkeri MS, Ph.D. thesis, Michigan State University.Google Scholar
  102. Kim, H., and Maier, R. J., 1990. Transcriptional regulation of hydrogenase synthesis by nickel in Bradyrhizobium japonicum, J. Biol. Chem. 265: 18729–18732.PubMedGoogle Scholar
  103. Kim, H., Yu, C., and Maier, R. J., 1991. Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen, J. Bacteriol. 173: 3993–3999.PubMedGoogle Scholar
  104. Klucas, R. V., Hanus, F. J., Russell, S. A., and Evans, H. J., 1983. Nickel: A micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves, Proc. Natl. Acad. Sci. USA 80: 2253–2257.PubMedGoogle Scholar
  105. Knüttel, K., Schneider, K., Schlegel, H. G., and Müller, A., 1989. The membrane-bound hydrogenase from Paracoccus denitrificans. Purification and molecular characterization, Eur. J. Biochem. 179: 101–108.PubMedGoogle Scholar
  106. Koch, H.-G., Kern, M., and Klemme, J.-H., 1992. Reinvestigation of regulation of biosynthesis and subunit composition of nickel-dependent Hup-hydrogenase of Rhodospirillum ruhrum, FEMS Microbiol. Lett. 91: 193–198.Google Scholar
  107. Kojima, N., Fox, J. A., Hausinger, R. P., Daniels, L., Orme-Johnson, W. H., and Walsh, C., 1983. Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum, Proc. Natl. Acad. Sci. USA 80: 378–382.PubMedGoogle Scholar
  108. Kortlüke, C., and Friedrich, B., 1992. Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus H16, J. Bacteriol. 174: 6290–6293.PubMedGoogle Scholar
  109. Kortlüke, C., Horstmann, K., Schwartz, E., Rohde, M., Binsack, R., and Friedrich, B., 1992. A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H 16, J. Bacteriol. 174: 6277–6289.PubMedGoogle Scholar
  110. Kovacs, K. L., Seefeldt, L. C., Tigyi, G., Doyle, C. M., Mortenson, L. E., and Arp, D. J., 1989. Immunological relationships among hydrogenases, J. Bacteriol. 171: 430–435.PubMedGoogle Scholar
  111. Kowal, A. T., Zambrano, I. C., Moura, I., Moura, J. J. G., LeGall, J., and Johnson, M. K., 1988. Electronic and magnetic properties of nickel-substituted rubredoxin: A variable-temperature magnetic circular dichroism study, Inorg. Chem. 27: 1162–1166.Google Scholar
  112. Krüger, H.-J., and Holm, R. H., 1987. Stabilization of nickel(III) in a classical N252 coordination environment containing anionic sulfur, Inorg. Chem. 26: 3645–3647.Google Scholar
  113. Krüger, H.-J., and Holm, R. H., 1990. Stabilization of trivalent nickel in tetragonal NiS4N2 and NiN6 environments: Synthesis, structures, redox potentials, and observations related to [NiFe]hydrogenases, J. Am. Chem. Soc. 112: 2955–2963.Google Scholar
  114. Krüger, H.-J., Huynh, B. H., Ljungdahl, P. 0., Xavier, A. V., DerVartanian, D. V., Moura, I., Peck, H. D., Jr., Teixeira, M., Moura, J. J. G., and LeGall, J., 1982. Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans, J. Biol. Chem. 257: 14620–14623.PubMedGoogle Scholar
  115. Krüger, H.-J., Peng, G., and Holm, R. H., 1991. Low-potential nickel(III,II) complexes: New systems based on tetradentate amidate-thiolate ligands and the influence of ligand structure on potentials in relation to the nickel site in [NiFe]-hydrogenases, Inorg. Chem. 30: 734–742.Google Scholar
  116. Kumar, M., Day, R. 0., Colpas, G. J., and Maroney, M. J., 1989a. Ligand oxidation in a nickel thiolate complex, J. Am. Chem. Soc. 111:5974–5976.Google Scholar
  117. Kumar, M., Colpas, G. J., Day, R. 0., and Maroney, M. J., 1989b. Ligand oxidation in a nickel thiolate complex: A model for the deactivation of hydrogenase by 02, J. Am. Chem. Soc. 111: 8323–8325.Google Scholar
  118. Lalla-Maharajh, W. V., Hall, D. 0., Cammack, R., Rao, K. K., and LeGall, J., 1983. Purification and properties of the membrane-bound hydrogenase from Desulfovibrio desulfuricans, Biochem. J. 209: 445–454.Google Scholar
  119. Lancaster, J. R., Jr., 1980. Soluble and membrane-bound paramagnetic centers in Met hanobacterium bryantii, FEBS Leu. 115: 285–288.Google Scholar
  120. Lancaster, J. R., Jr., 1982. New biological paramagnetic center: Octahedrally coordinated nickel(III) in the methanogenic bacteria, Science 216: 1324–1325.PubMedGoogle Scholar
  121. Lappin, A. G., Murray, C. K., and Margerum, D. W., 1978. Electron paramagnetic resonance studies of nickel(III)-oligopeptide complexes, Inorg. Chem. 17: 1630–1634.Google Scholar
  122. Leclerc, M., Colbeau, A., Cauvin, B., and Vignais, P., 1988. Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus, Mol. Gen. Genet. 214: 97–107.PubMedGoogle Scholar
  123. Lee, M. H., Mulrooney, S. B., Renner, M. J., Markowitz, Y., and Hausinger, R. P., 1992. Klebsiella aerogenes urease gene cluster: Sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis, J. Bacteriol. 174: 4324–4330.Google Scholar
  124. LeGall, J., Ljungdahl, P. 0., Moura, I., Peck, H. D., Jr., Xavier, A. V., Moura, J. J. G., Teixeira, M., Huynh, B. H., and DerVartanian, D. V., 1982. The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas, Biochem. Biophys. Res. Commun. 106: 610–616.PubMedGoogle Scholar
  125. Li, C., Peck, H. D., Jr., LeGall, J., and Przybyla, A. E., 1987. Cloning, characterization, and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFe]hydrogenase of Desulfovibrio gigas, DNA 6: 539–551.PubMedGoogle Scholar
  126. Lindahl, P. A., Kojima, N., Hausinger, R. P., Fox, J. A., Teo, B. K., Walsh, C. T., and Orme-Johnson, W. H., 1984. Nickel and iron EXAFS of F420-reducing hydrogenase from Methanobacterium thermoautotrophicum, J. Am. Chem. Soc. 106: 3062–3064.Google Scholar
  127. Lissolo, T., Pulvin, S., and Thomas, D., 1984. Reactivation of the hydrogenase from Desulfovibrio gigas by hydrogen. Influence of redox potential, J. Biol. Chem. 259: 11725–11729.PubMedGoogle Scholar
  128. Lissolo, T., Choi, E. S., LeGall, J., and Peck, H. D., Jr., 1986. The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough), Biochem. Biophys. Res. Commun. 139: 701–708.PubMedGoogle Scholar
  129. Lutz, S., Jacobi, A., Schlensog, V., Böhm, R., Sawers, G., and Böck, A., 1991. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli, Mol. Microbiol. 5: 123–135.PubMedGoogle Scholar
  130. Maier, T., Jacobi, A., Sauter, M., and Böck, A., 1993. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein, J. Bacteriol. 175: 630–635.PubMedGoogle Scholar
  131. Maroney, M. J., Colpas, G. J., and Bagyinka, C., 1990. X-ray absorption spectroscopic structural investigation of the Ni site in reduced Thiocapsa roseopersicina hydrogenase, J. Am. Chem. Soc. 112: 7076–7068.Google Scholar
  132. Maroney, M. J., Colpas, G. J., Bagyinka, C., Baidya, N., and Mascharak, P. K., 1991. EXAFS investigations of the Ni site in Thiocapsa roseopersicina hydrogenase: Evidence for a novel Ni,Fe,S cluster, J. Am. Chem. Soc. 113: 3962–3972.Google Scholar
  133. Mege, R.-M., and Bourdillon, C., 1985. Nickel controls the reversible anaerobic activation/inactivation of the Desulfovibrio gigas hydrogenase by the redox potential, J. Biol. Chem. 260: 14701–14706.PubMedGoogle Scholar
  134. Menon, N. K., Peck, H. D., Jr., LeGall, J., and Przybyla, A. E., 1987. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus, J. Bacteriol. 169: 5401–5407. [Erratum 170:4429.]Google Scholar
  135. Menon, A. L., Stults, L. W., Robson, R. L., and Mortenson, L. E., 1990a. Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii, Gene 96: 67–74.PubMedGoogle Scholar
  136. Menon, N. K., Robbins, J., Peck, H. D., Jr., Chatelus, C. Y., Choi, E.-S., and Przybyla, A. E., 1990b. Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-a operon containing six open reading frames, J. Bacteriol. 172: 1969–1977.PubMedGoogle Scholar
  137. Menon, N. K., Robbins, J., Wendt, J. C., Shanmugan, K. T., and Przybyla, A. E., 1991. Mutational analysis and characterization of the Escherichia coli hya operon which encodes [NiFe] hydrogenase 1, J. Bacteriol. 173: 4851–4861.PubMedGoogle Scholar
  138. Menon, A. L., Mortenson, L. E., and Robson, R. L., 1992. Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii, J. Bacteriol. 174: 45494557.Google Scholar
  139. Moura, J. J. G., Moura, I., Huynh, B. H., Krüger, H.-J., Teixeira, M., DuVarney, R. C., Der Vartanian, D. V., Xavier, A. V., Peck, H. D., Jr., and LeGall, J., 1982. Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase, Biochem. Biophys. Res. Commun. 108: 1388–1393.PubMedGoogle Scholar
  140. Moura, J. J. G., Teixeira, M., Moura, I., and LeGall, J., 1988. (Ni,Fe) hydrogenases from sulfate-reducing bacteria: Nickel catalytic and regulatory roles, in The Bioinorganic Chemistry of Nickel (J. R. Lancaster, Jr., ed.), VCH Publishers, New York, pp. 191–226.Google Scholar
  141. Mus-Veteau, I., Diaz, D., Gracia-Mora, J., Guigliarelli, B., Chottard, G., and Bruschi, M., 1991. Spectroscopic studies of the nickel-substituted Desulfovibrio vulgaris Hildenborough rubredoxin: Implication for the nickel site in hydrogenases, Biochim. Biophys. Acta 1060: 159165.Google Scholar
  142. Muth, E., Mörschel, E., and Klein, A., 1987. Purification and characterization of an 8-hydroxy5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae, Eur. J. Biochem. 169: 571–577.PubMedGoogle Scholar
  143. Nakamura, Y., Someya, J.-I., and Suzuki, T., 1985. Nickel requirement of oxygen-resistant hydrogen bacterium, Xanthobacter autotrophicus strain Y38, Agric. Biol. Chem. 49: 1711–1718.Google Scholar
  144. Nelson, M. J. K., Brown, D. P., and Ferry, J. G., 1984. FAD requirement for the reduction of coenzyme F420 by hydrogenase from Methanobacterium formicicum, Biochem. Biophys. Res. Commun. 120: 775–781.PubMedGoogle Scholar
  145. Nivière, V., Forget, N., Gayda, J. P., and Hatchikian, E. C., 1986. Characterization of the soluble hydrogenase from Desulfovibrio africanus, Biochem. Biophys. Res. Commun. 139: 658–665.PubMedGoogle Scholar
  146. Nivière, V., Hatchikian, E., Cambillau, C., and Frey, M., 1987. Crystallization, preliminary X-ray study and crystal activity of the hydrogenase from Desulfovibrio gigas, J. Mol. Biol. 195: 969–971.PubMedGoogle Scholar
  147. Odom, J. M., and Peck, H. D., Jr., 1984. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio, Annu. Rev. Microbiol. 38: 551–592.PubMedGoogle Scholar
  148. Papen, H., Kentemich, T., Schmülling, T., and Bothe, H., 1986. Hydrogenase activities in cyanobacteria, Biochimie 68: 121–132.PubMedGoogle Scholar
  149. Partridge, C. D. P., and Yates, M. G., 1982. Effect of chelating agents on hydrogenase in Azotobacter chroococcum. Evidence that nickel is required for hydrogenase synthesis, Biochem. J. 204: 339–344.PubMedGoogle Scholar
  150. Pederson, D. M., Daday, A., and Smith, G. D., 1986. The use of nickel to probe the role of hydrogen metabolism in cyanobacteria] nitrogen fixation, Biochimie 68: 113–120.PubMedGoogle Scholar
  151. Pedrosa, F. O., and Yates, M. G., 1983. Effect of chelating agents and nickel ions on hydrogenase activity in Azospirillum brasilense, A. lipoferum and Derxia gummosa, FEMS Microbiol. Lett. 17: 101–106.Google Scholar
  152. Pihl, T. D., and Maier, R. J., 1991. Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii, J. Bacteriol. 173: 1839–1844.PubMedGoogle Scholar
  153. Pinkwart, M., Schneider, K., and Schlegel, H. G., 1983. Purification and properties of the membrane-bound hydrogenase from N2-fixing Alcaligenes latus, Biochim. Biophys. Acta 745: 267–278.PubMedGoogle Scholar
  154. Przybyla, A. E., Robbins, J., Menon, N., and Peck, H. D., Jr., 1992. Structure/function relationships among the nickel-containing hydrogenases, FEMS Microbiol. Rev. 88: 109–136.Google Scholar
  155. Rai, L. C., and Raizada, M., 1986. Nickel induced stimulation of growth, heterocyst differentiation, 14CO2 uptake and nitrogenase activity in Nostoc muscorum, New Phytol. 104: 111–114.Google Scholar
  156. Reeve, J. N., Beckler, G. S., Cram, D. S., Hamilton, P. T., Brown, J. W., Krzycki, J. A., Kolodziej, A. F., Alex, L., Orme-Johnson, W. H., and Walsh, C. T., 1989. A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain AH encodes a polyferredoxin, Proc. Natl. Acad. Sci. USA 86: 3031–3035.PubMedGoogle Scholar
  157. Rey, L., Hidalgo, E., Palacios, J., and Ruiz-Argüeso, T., 1992. Nucleotide sequence and organization of an H2-uptake gene cluster from Rhizobium leguminosarum by. viciae containing a rubredoxin-like gene and four additional open reading frames, J. Mol. Biol. 228: 998–1002.PubMedGoogle Scholar
  158. Rey, L., Murillo, J., Hernando, Y., Hildalgo, E., Cabrera, E., Imperial, J., and Ruiz-Argüeso, T., 1993. Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosasum biovar viciae, Mol. Microbiol. 8: 471–481.PubMedGoogle Scholar
  159. Rieder, R., Cammack, R., and Hall, D. 0., 1984. Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4), Eur. J. Biochem. 145: 637643.Google Scholar
  160. Rousset, M., Dermoun, Z., Hatchikian, C. E., and Bélaich, J.-P., 1990. Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic [NiFe]hydrogenase from Desulfovibrio fructosovorans, Gene 94: 95–101.PubMedGoogle Scholar
  161. Saint-Martin, P., Lespinat, P. A., Fauque, G., Berlier, Y., LeGall, J., Moura, I., Teixeira, M., Xavier, A. V., and Moura, J. J. G., 1988. Hydrogen production and deuterium-proton exchange reactions catalyzed by Desulfovibrio nickel(II)-substituted rubredoxins, Proc. Natl. Acad. Sci. USA 85: 9378–9380.PubMedGoogle Scholar
  162. Sauter, M., Böhm, R., and Bock, A., 1992. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli, Mol. Microbiol. 6: 1523–1532.PubMedGoogle Scholar
  163. Sawers, R. G., and Boxer, D. H., 1986. Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12, Eur. J. Biochem. 156: 265–275.PubMedGoogle Scholar
  164. Sawers, R. G., Ballantine, S. P., and Boxer, D. H., 1985. Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: Evidence for a third isozyme, J. Bacteriol. 164: 1324 1331.Google Scholar
  165. Sayavedra-Soto, L. A., and Arp, D. J., 1992. The hoxZ gene of Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase, J. Bacteriol. 174: 5295–5301.PubMedGoogle Scholar
  166. Sayavedra-Soto, L. A., and Arp, D. J., 1993. In Azotobacter vinelandii hydrogenase, substitution of serine for the cysteine residues at positions 62, 65, 289, and 292 in the small (HoxK) subunit affects H2 oxidation, J. Bacteriol. 175: 3414–3421. [Erratum: 175:5744]Google Scholar
  167. Sayavedra-Soto, L. A., Powell, G. K., Evans, H. J., and Morris, R. 0., 1988. Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase, Proc. Natl. Acad. Sci. USA 85: 8395–8399.Google Scholar
  168. Schneider, K., and Piechulla, B., 1986. Isolation and immunological characterization of the four non-identical subunits of the soluble NAD-linked dehydrogenase from Alcaligenes eutrophus, Biochimie 68: 5–13.PubMedGoogle Scholar
  169. Schneider, K., and Schlegel, H. G., 1976. Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16, Biochim. Biophys. Acta 452: 66–80.PubMedGoogle Scholar
  170. Schneider, K., Patil, D. S., and Cammack, R., 1983. ESR properties of membrane-bound hydrogenases from aerobic hydrogen bacteria, Biochim. Biophys. Acta 748: 353–361.Google Scholar
  171. Schneider, K., Schlegel, H. G., and Jochim, K., 1984a. Effect of nickel on activity and subunit composition of purified hydrogenase of Nocardia opaca lb, Eur. J. Biochem. 138: 533–541.PubMedGoogle Scholar
  172. Schneider, K., Cammack, R., and Schlegel, H. G., 1984b. Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca lb, Eur. J. Biochem. 142: 75–84.PubMedGoogle Scholar
  173. Scott, R. A., Wallin, S. A., Czechowski, M., DerVartanian, D. V., LeGall, J., Peck, H. D., Jr., and Moura, I., 1984. X-ray absorption spectroscopy of nickel in the hydrogenase from Desulfovibrio gigas, J. Am. Chem. Soc. 106: 6864–6865.Google Scholar
  174. Seefeldt, L. C., and Arp, D. J., 1986. Purification to homogeneity of Azotobacter vinelandii hydrogenase: A nickel and iron containing «ß dimer, Biochimie 68: 25–34.PubMedGoogle Scholar
  175. Seefeldt, L. C., and Arp, D. J., 1989. Oxygen effects on the nickel-and iron-containing hydrogenase from Azotobacter vinelandii, Biochemistry 28: 1588–1596.Google Scholar
  176. Seefeldt, L. C., McCollum, L. C., Doyle, C. M., and Arp, D. J., 1987. Immunological and molecular evidence for a membrane-bound, dimeric hydrogenase in Rhodopseudomonas capsulata, Biochim. Biophys. Acta 914: 299–303.Google Scholar
  177. Sellstedt, A., and Smith, G. D., 1990. Nickel is essential for active hydrogenase in free-living Frankia isolated from Casuarina, FEMS Microbiol. Lett. 70: 137–140.Google Scholar
  178. Serebryakova, L. T., Zorin, N. A., and Gogotov, I. N., 1990. Purification and properties of the hydrogenase of the green nonsulfur bacterium Chloroflexus aurantiacus, Biokhimiya 55: 372–380.Google Scholar
  179. Shah, N. J., and Clark, D. S., 1990. Partial purification and characterization of two hydrogenases from the extreme thermophile Methanococcus jannaschii, Appl. Environ. Microbiol. 56: 858863.Google Scholar
  180. Sherman, M. B., Orlova, E. V., Smirnova, E. A., Hovmöller, S., and Zorin, N. A., 1991. Three-dimensional structure of the nickel-containing hydrogenase from Thiocapsa roseopersicina, J. Bacteriol. 173: 2576–2580.PubMedGoogle Scholar
  181. Soeder, C. J., and Engelmann, G., 1984. Nickel requirement in Chlorella emersonii, Arch. Microbiol. 137: 85–87.Google Scholar
  182. Sorgenfrei, O., Linder, D., Karas, M., and Klein, A., 1993. A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is posttranslationally processed by cleavage at a defined position, Fur. J. Biochem. 213: 1355–1358.Google Scholar
  183. Sprott, G. D., Shaw, K. M., and Beveridge, T. J., 1987. Properties of the particulate enzyme F420-reducing hydrogenase isolated from Methanospirillum hungatei, Can. J. Microbiol. 33: 896904.Google Scholar
  184. Stadtman, T. C., 1990. Selenium biochemistry, Annu. Rev. Biochem. 59: 111–127.PubMedGoogle Scholar
  185. Steigerwald, V. J., Beckler, G. S., and Reeve, J. N., 1990. Conservation of hydrogenase and polyferredoxin structures in the hyperthermophile archaebacterium Methanothermus fervidus, J. Bacteriol. 172: 4715–4718.PubMedGoogle Scholar
  186. Stoker, K., Oltmann, L. F., and Stouthamer, A. H., 1989. Randomly induced Escherichia coli K-12 Tn5 insertion mutants defective in hydrogenase activity, J. Bacteriol. 171: 831–836.PubMedGoogle Scholar
  187. Stults, L. W., O’Hara, E. B., and Maier, R. J., 1984. Nickel is a component of hydrogenase in Rhizobium japonicum, J. Bacteriol. 159: 153–158.PubMedGoogle Scholar
  188. Stults, L. W., Moshiri, F., and Maier, R. J., 1986a. Aerobic purification of hydrogenase from Rhizobium japonicum by affinity chromatography, J. Bacteriol. 166: 795–800.PubMedGoogle Scholar
  189. Stults, L. W., Sray, W. A., and Maier, R. J., I986b. Regulation of hydrogenase biosynthesis by nickel in Bradyrhizobium japonicum, Arch. Microbiol. 146: 280–283.Google Scholar
  190. Szökefalvi-Nagy, Z., Bagyinka, C., Demeter, I., Kovacs, K. L., and Quynh, L. H., 1990. Location and quantitation of metal ions in enzymes combining polyacrylamide gel electrophoresis and particle-induced X-ray emission, Biol. Trace Elem. Res. 93–101.Google Scholar
  191. Tabillion, R., Weber, F., and Kaltwasser, H., 1980. Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria, Arch. Microbiol. 124: 131–136.Google Scholar
  192. Takakuwa, S., and Wall, J. D., 1981. Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel, FEMS Microbiol. Lett. 12: 359–363.Google Scholar
  193. Tan, S. L., Fox, J. A., Kojima, N., Walsh, C. T., and Orme-Johnson, W. H., 1984. Nickel coordination in deazaflavin and viologen-reducing hydrogenases from Methanobacterium thermoautotrophicum: Investigation by electron spin echo spectroscopy, J. Am. Chem. Soc. 106: 3064–3066.Google Scholar
  194. Teixeira, M., Moura, I., Xavier, A. V., DerVartanian, D. V., LeGall, J., Peck, H. D., Jr., Huynh, B. H., and Moura, J. J. G., 1983. Desulfovibrio gigas hydrogenase: Redox properties of the nickel and iron-sulfur centers, Eur. J. Biochem. 130: 481–484.Google Scholar
  195. Teixeira, M., Moura, I., Xavier, A. V., Huynh, B. H., DerVartanian, D. V., Peck, H. D., Jr., LeGall, J., and Moura, J. J. G., 1985. Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas, J. Biol. Chem. 260: 8942–8950.PubMedGoogle Scholar
  196. Teixeira, M., Moura, I., Fauque, G., Czechowski, M., Berlier, Y., Lespinat, P. A., LeGall, J., Xavier, A. V., and Moura, J. J. G., 1986. Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens, Biochimie 68: 75–84.PubMedGoogle Scholar
  197. Teixeira, M., Fauque, G., Moura, I., Lespinat, P. A., Berlier, Y., Prickril, B., Peck, H. D., Jr., Xavier, A. V., LeGall, J., and Moura, J. J. G., 1987. Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties, Eur. J. Biochem. 167: 47–58.PubMedGoogle Scholar
  198. Teixeira, M., Moura, I., Xavier, A. V., Moura, J. J. G., LeGall, J., DerVartanian, D. V., Peck, H. D., Jr., and Huynh, B. H., 1989. Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mössbauer and EPR characterization of the metal centers, J. Biol. Chem. 264: 16435–16450.PubMedGoogle Scholar
  199. Tibelius, K. H., Du, L., Tito, D., and Stejskal, F., 1993. The Azotobacter chroococcum hydrogenase gene cluster: Sequences and genetic analysis of four accessory genes, hupA, hupB, hupY and hupC, Gene 127: 53–61.PubMedGoogle Scholar
  200. Tran-Betcke, A., Warnecke, U., Böcker, C., Zaborosch, C., and Friedrich, B., 1990. Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase ofAlcaligenes eutrophus H 16, J. Bacteriol. 172: 2920–2929.PubMedGoogle Scholar
  201. Uffen, R. L., Colbeau, A., Richaud, P., and Vignais, P. M., 1990. Cloning and sequencing the genes encoding uptake-hydrogenase subunits of Rhodocyclus gelatinosus, Mol. Gen. Genet. 221: 49–58.PubMedGoogle Scholar
  202. Unden, G., Böcher, R., Knecht, J., and Kröger, A., 1982. Hydrogenase from Vibrio succinogenes, a nickel protein, FEBS Lett. 145: 230–234.PubMedGoogle Scholar
  203. van Baalen, C., and O’Donnell, R., 1978. Isolation of a nickel-dependent blue-green alga, J. Gen. Microbiol. 105: 351–353.Google Scholar
  204. van der Zwaan, J. W., Albracht, S. P. J., Fontijn, R. D., and Slater, E. C., 1985. Monovalent nickel in hydrogenase from Chromatium vinosum, FEBS Lett. 179: 271–277.PubMedGoogle Scholar
  205. van der Zwaan, J. W., Albracht, S. P. J., Fontijn, R. D., and Mul, P., 1987. On the anomalous temperature behaviour of the EPR signal of monovalent nickel in hydrogenase, Eur. J. Biochem. 169: 377–384.PubMedGoogle Scholar
  206. van der Zwaan, J. W., Coremans, J. M. C. C., Bouwens, E. C. M., and Albracht, S. P. J., 1990. Effect of 1702 and “CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum, Biochim. Biophys. Acta 1041: 101–110.PubMedGoogle Scholar
  207. van Heerikhuizen, H., Albracht, S. P. J., Slater, E. C., and Rheenen, P. S., 1981. Purification and some properties of the soluble hydrogenase from Chromatium vinosum, Biochim. Biophys. Acta 657: 26–39.PubMedGoogle Scholar
  208. Voordouw, G., and Brenner, S., 1985. Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough), Eur. J. Biochem. 148: 515–520.PubMedGoogle Scholar
  209. Voordouw, G., Menon, N. K., LeGall, J., Choi, E.-S., Peck, H. D., Jr., and Przybyla, A. E., 1989. Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus, J. Bacteriol. 171: 2894 2899.Google Scholar
  210. Wackett, L. P., Hartwieg, E. A., King, J. A., Orme-Johnson, W. H., and Walsh, C. T., 1987. Electron microscopy of nickel-containing methanogenic enzymes: Methyl reductase and F420-reducing hydrogenase, J. Bacteriol. 169: 718–727.PubMedGoogle Scholar
  211. Wang, C.-P., Franco, R., Moura, J. J. G., Moura, I., and Day, E. P., 1992. The nickel site in active Desulfovibrio baculatus [NiFeSe] hydrogenase is diamagnetic. Multifield saturation magnetization measurement of the spin state of Ni(II), J. Biol. Chem. 267: 7378–7380.PubMedGoogle Scholar
  212. Waugh, R., and Boxer, D. H., 1986. Pleiotropic hydrogenase mutants of Escherichia coli K12: Growth in the presence of nickel can restore hydrogenase activity, Biochimie 68: 157–166.PubMedGoogle Scholar
  213. Whitehead, J. P., Colpas, G. J., Bagyinka, C., and Maroney, M. J., 1991. X-ray absorption spectroscopic study of the reductive activation of Thiocapsa roseopersicina hydrogenase, J. Am. Chem. Soc. 113: 6288–6289.Google Scholar
  214. Wu, L. F., 1992. Putative nickel-binding sites of microbial proteins, Res. Microbiol. 143: 347351.Google Scholar
  215. Wu, L.-F., and Mandrand, M. A., 1993. Microbial hydrogenases: Primary structure, classification, signatures and phylogeny, FEMS Microbiol. Rev. 104: 243–270.Google Scholar
  216. Wu, L. F., and Mandrand-Berthelot, M.-A., 1986. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity, Biochimie 68: 167–179.PubMedGoogle Scholar
  217. Wu, L.-F., Mandrand-Berthelot, M.-A., Waugh, R., Edmonds, C. J., Holt, S. E., and Boxer, D. H., 1989. Nickel deficiency gives rise to the defective phenotype of hydC and fnr mutants in Escherichia coli, Mol. Microbiol. 3: 1709–1718.Google Scholar
  218. Wu, L.-F., Navarro, C., and Mandrand-Berthelot, M.-A., 1991. The hydC region contains a multicistronic operon (nik) involved in nickel transport in Escherichia coli, Gene 107: 37–42.Google Scholar
  219. Xiankong, Z., Tabita, F. R., and van Baalen, C., 1984. Nickel control of hydrogen production and uptake in Anabaena spp. strains CA and 1F, J. Gen. Microbiol. 130: 1815–1818.Google Scholar
  220. Xu, H.-W., and Wall, J. D., 1991. Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus, J. Bacteriol. 173: 2401–2405.Google Scholar
  221. Yamazaki, S., 1982. A selenium-containing hydrogenase from Methanococcus vannielii, J. Biol. Chem. 257: 7926–7929.Google Scholar
  222. Zaborosch, C., Schneider, K., Schlegel, H. G., and Kratzin, H., 1989. Comparison of the NH2terminal amino acid sequences of the four non-identical subunits of the NAD-linked hydrogenases from Nocardia opaca lb and Alcaligenes eutrophus H16, Eur. J. Biochem. 181: 175180.Google Scholar
  223. Zimmer, M., Schulte, G., Luo, X.-L., and Crabtree, R. H., 1991. Functional modeling of Ni,Fe hydrogenases: A nickel complex in an N,O,S environment, Angew. Chem. Int. Ed. Engl. 30: 193–194.Google Scholar
  224. Zinoni, F., Beier, A., Pecher, A., Wirth, R., and Back, A., 1984. Regulation of the synthesis of hydrogenase (formate hydrogen-lyase) of E. coli, Arch. Microbiol. 139: 299–304.Google Scholar
  225. Zirngibl, C., van Dongen, W., Schwörer, B., von Bünau, R., Richter, M., Klein, A., and Thauer, R. K., 1992. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea, Eur. J. Biochem. 208: 511–520.PubMedGoogle Scholar
  226. Zorin, N. A., 1986. Redox properties and active center of phototrophic bacterial hydrogenases, Biochimie 68: 97–101.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Robert P. Hausinger
    • 1
  1. 1.Departments of Microbiology and BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations