The Role of the Pretectum in the Pupillary Light Reflex

  • R. J. Clarke
  • P. D. R. Gamlin


The pupillary light reflex (PLR) is the constriction muscle of the iris that occurs with increases in retinal illumination. The direct PLR, present in virtually all vertebrates, is the constriction of the pupil in the same eye as that stimulated with light. The consensual PLR is the constriction of the pupil in the eye opposite to the eye stimulated with light. In mammals with laterally placed eyes, such as the rat and rabbit, the direct PLR is more pronounced than the consensual PLR (Lowenstein & Loewenfeld, 1969; Clarke & Ikeda, 1985; Trejo & Cicerone, 1989). However, in those mammalian species with frontally placed eyes such as humans & monkeys, the direct and consensual PLR are essentially equal (Lowenstein & Loewenfeld, 1969).


Receptive Field Superior Colliculus Pupillary Response Pupillary Light Reflex Darkness Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bando, T. (1985) Pupillary constriction evoked from the posterior medial lateral suprasylvian (PMLS) area in cats, Neurosci. Res. 2:472–485.PubMedCrossRefGoogle Scholar
  2. Berman, N. (1977) Connections of the pretectum in the cat, J. Comp. Neurol. 174:227–254.PubMedCrossRefGoogle Scholar
  3. Brown, R.H., Zilis, J.D., Lynch, M.G. and Sandbom, G.E. (1987) The afferent pupillary defect in asymmetric glaucoma, Arch. Ophthalmol. 105:1540–1543.PubMedCrossRefGoogle Scholar
  4. Campbell, G. and Lieberman, A. (1985) The olivary pretectal nucleus: experimental anatomical studies in the rat, Phil. Trans. R. Soc. Lond B. 301:573–609.CrossRefGoogle Scholar
  5. Campbell, F.W. (1957) The depth of field of the human eye, Optica Acta 4:157–164.CrossRefGoogle Scholar
  6. Campbell, F.W. and Gregory, A.H. (1960) Effect of size of the pupil on visual acuity, Nature 187:1121–1123.PubMedCrossRefGoogle Scholar
  7. Campbell, F.W. and Green, D.G. (1965) Optical and retinal factors affecting visual resolution, J. Physiol. 181:576–593.PubMedGoogle Scholar
  8. Cavaggionni, A., Madarasz, I. and Zampollo, A. (1968) Photic reflex and pretectal region, Arch. Ital. Biol. 106:227–242.Google Scholar
  9. Charman, W.N., Jenning, J.A.M. and Whitefoot, H. (1978) The refraction of the eye in relation to spherical aberration and pupil size, Vision Res. 17:737–738.Google Scholar
  10. Clarke, R.J. and Ikeda, H. (1981) Pupillary response and luminance and darkness detector neurones in the pretectum of the rat, Doc. Ophthalmol. (The Hague). Series 30:53–61.Google Scholar
  11. Clarke, R.J. and Ikeda, H. (1985a) Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat. I Studies with steady luminance levels, Exp. Brain Res. 57:224–232.PubMedCrossRefGoogle Scholar
  12. Clarke, R.J. and Ikeda, H. (1985b) Luminance detectors in the olivary pretectal nuclei and their relationship to the pupillary light reflex in the rat. II Studies with sinusoidal light, Exp. Brain Res. 59:83–90.PubMedCrossRefGoogle Scholar
  13. Clarke, R. J., Zhang, H. Y. and Gamlin, P.D.R. (1993) Visual response characteristics of olivary pretectal nucleus neurons in the alert monkey, Soc. Neurosci. Abstr. 19:330.Google Scholar
  14. Dineen, J.T. and Hendrickson, A. (1983) Overlap of retinal and prestriate cortical pathways in the primate pretectum, Brain Res. 278:250–254.PubMedCrossRefGoogle Scholar
  15. Distler C. and Hoffmann, K-P. (1989a) The pupillary light reflex in normal and innate microstrabismic cats, I: Behavior and receptive-field analysis in the nucleus praetectalis olivaris, Vis. Neurosci. 3:127–138.PubMedCrossRefGoogle Scholar
  16. Distler C. and Hoffmann, K-P. (1989b) The pupillary light reflex in normal and innate microstrabismic cats, II: Retinal and cortical input to the nucleus praetectalis olivaris, Vis. Neurosci. 3:139–153.PubMedCrossRefGoogle Scholar
  17. Fuchs A.F and Robinson D.A. (1966) A method for measuring horizontal and vertical eye movement chronically in the monkey, J. Applied Physiol. 21:1068–1070.Google Scholar
  18. Gamlin, P.D.R., Zhang, H. and Clarke, R.J. (1995) Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey, Exp. Brain Res. 106:177–180.CrossRefGoogle Scholar
  19. Gamlin, P.D.R. and Clarke, R.J. (1995) The pupillary light reflex of the primate, J. Am. Opt. Assoc. 66:415–418.Google Scholar
  20. Graybiel, A.M. and Hartweig, E.A. (1974) Some afferent connections of the oculomotor complex in the cat: An experimental study with tracer techniques, Brain Res. 81:543–551.PubMedCrossRefGoogle Scholar
  21. Harutiunian-Kosak, B., Kosak, W. and Dec, K. (1968) Single units in the pretectal region of the cat, Acta Biol. Exp. (Warsaw). 28:333–343.Google Scholar
  22. Hoffmann, K-P. and Schoppmann, A. (1975) Retinal input to direction selective cells in the nucleus tractus opticus of the cat, Brain Res. 99:359–366.PubMedCrossRefGoogle Scholar
  23. Hoffmann, K-P. and Distler, C. (1989) Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey, J. Neurophysiol. 62:416–428.PubMedGoogle Scholar
  24. Hoffmann, K-P., Distler, C. and Ilg, U. (1992) Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey’s nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract, J. Comp. Neurol. 321:150–162.PubMedCrossRefGoogle Scholar
  25. Inoue, T. and Kiribuchi, T. (1985) Cortical and subcortical pathways for pupillary reactions in rabbits, Jpn. J. Ophthal. 29:63–70.Google Scholar
  26. Johnson, L.N., Hill, R.A. and Bartholomew, M.J. (1988) Correlation of afferent pupillary defects with visual field loss on automated perimetry, Ophthalmol. 95:1649–1655.Google Scholar
  27. Judge, S.J. and Cumming, B.G. (1986) Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation, J. Neurophysiol. 55:915–930.PubMedGoogle Scholar
  28. Kardon, R.H., Kirkali, RA. and Thompson, H.S. (1991) Automated pupil perimetry. Pupil field mapping in patients and normal subjects, Ophthalmology 98:485–496.PubMedGoogle Scholar
  29. Kondo, Y., Takada, M., Kayahara, T., Yasui, Y., Nakano, K. and Mizuno, N. (1992) Single retinal ganglion cells sending axon collaterals to the bilateral superior colliculi: a fluorescent double-labeling study in the japanese monkey (Macaca fuscata), Brain Res. 597:155–161.PubMedCrossRefGoogle Scholar
  30. Leichnetz, G. R. (1990) Preoccipital cortex receives a differential input from the frontal eye field and projects to the pretectal olivary nucleus and other visuomotor-related structures in the rhesus monkey, Vis. Neurosci. 5:123–133.PubMedCrossRefGoogle Scholar
  31. Lowenstein, O. and Loewenfeld, I.E. (1950) Role of sympathetic and parasympathetic systems in reflex dilation of the pupil, Arch. Neurol. Psychiat., 64:313–377.PubMedCrossRefGoogle Scholar
  32. Lowenstein, O. and Loewenfeld, I.E. (1969) The pupil, In: The Eye, (Ed. H. Davson), New York-London, Academic Press. 3:255–337.Google Scholar
  33. Lowenstein, O. Murphy, S.B. and Loewenfeld, I.E. (1953) Functional evaluation of the pupillary light reflex pathways, Arch. Ophthalmol. 49:657–670.CrossRefGoogle Scholar
  34. Loewenfeld, I.E. (1993) The pupil. Anatomy, physiology, and clinical applications, Vol. 1, Iowa State University Press / Ames. Wayne State university Press/ Detroit.Google Scholar
  35. Loewy, A.D., Aroujo, J.C. and Kerr, F.W.C. (1973) Pupillodilator pathways in the brainstem of the cat: anatomical and electrophysiological identification of a central autonomic pathway, Brain Res. 60:65–91.PubMedCrossRefGoogle Scholar
  36. Loewy, A.D. (1979) Neural regulation of the pupil, In: C.M. Brooks, K. Koizumi, and A. Sato (Eds.): Integrative Functions of the Nervous System. Amsterdam: Elsevier/North Holland, pp. 131–141.Google Scholar
  37. Magoun, H.W., Atlas, D., Hare, W.K. and Ranson, S.W. (1935) The afferent pathways of the pupillary light reflex in the monkey, Brain 59:234–249.CrossRefGoogle Scholar
  38. Mays, L.E., Porter, J.D., Gamlin, P.D.R. and Tello, C.A. (1986) Neural control of vergence eye movements: neurons encoding vergence velocity, J. Neurophysiol. 56:1007–1021.PubMedGoogle Scholar
  39. Munoz, D.P. and Wurtz, R.H. (1993) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge, J Neurophysiol. 70:559–575.PubMedGoogle Scholar
  40. Mustari, M.J. and Fuchs, A.F. (1990) Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate, J. Neurophysiol. 64:77–90.PubMedGoogle Scholar
  41. Nicholson, J. and Severin, C.M. (1981) Afferent projections of the Edinger-Westphal nucleus in the rat, Acta Anat. 199:183.Google Scholar
  42. Nisida, I., Okada, H. and Nakano, O. (1960) The activity of the cilio-spinal centers and their inhibition in the pupillary light reflex, Jap. J. Physiol. 10:73–84.CrossRefGoogle Scholar
  43. Okada, H., Nakano, O., Okamoto, K., Hakayama, K, and Nishida, I. (1960) The central path of the light reflex via the sympathetic nerve in the cat, Jap. J. Physiol. 10:646–658.CrossRefGoogle Scholar
  44. Perry, V.H. and Cowey, A. (1984) Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey, Neurosci. 12:1125–1137.CrossRefGoogle Scholar
  45. Ranson, S.W. and Magoun, H.W. (1933) The central path of the pupilloconstrictor reflex in response to light, Arch. Neurol. Psychiat. 30:1193–1202.CrossRefGoogle Scholar
  46. Rodieck, R.W. (1979) Visual pathways, Ann. Rev. Neurosci. 2:193–225.PubMedCrossRefGoogle Scholar
  47. Rushton, W.A.H. (1965) (The Ferrier lecture). Visual adaptation, Proc. Roy. Soc. B. 162:20–46.CrossRefGoogle Scholar
  48. Scalia, F. (1970) Retinal projections of the olivary pretectal nucleus in the tree-shrew and comparison with the rat, Brain, Behav. Evol. 6:237–252.CrossRefGoogle Scholar
  49. Scalia, F. and Arango, V. (1979) Topographic organization of the projections of the pretectal region in the rat, J. Comp. Neurol. 186:271–292.PubMedCrossRefGoogle Scholar
  50. Scinto, L.F.M., Daffner, K.R., Dressier, D., Ransil, B.I., Rentz, D., Weintraub, S., Mesulam, M. and Potter, H. (1994) A potential non-invasive neurobiological test for Alzheimer’s disease, Science 266:1051–1054.PubMedCrossRefGoogle Scholar
  51. Sillito, A.M. and Zbrozyna, A.W. (1970) The localization of pupilloconstrictor function within the midbrain of the cat, J. Physiol. 211:461–477.PubMedGoogle Scholar
  52. Sillito, A.M. and Zbrozyna, A.W. (1970) The activity characteristics of preganglionic pupilloconstrictor neurones, J. Physiol. 211:767–779.PubMedGoogle Scholar
  53. Siminoff, R., Schwassmann, H.O. and Kruger, L. (1967) Unit analysis of the pretectal nuclear group in the rat, J. Comp. Neurol. 130:329–342.CrossRefGoogle Scholar
  54. Smith, J.D., Ichinose, C.Y., Masek, G.A., Watanabe, T. and Stark, L. (1968) Midbrain single units correlating with pupil response to light, Science 162:1302–1303.PubMedCrossRefGoogle Scholar
  55. Smith, J.D., Masek, G.A., Ichinose, C.Y., Watanabe, T. and Stark, L. (1970) Single neuron activity in the pupillary system, Brain Res. 24:219–234.PubMedCrossRefGoogle Scholar
  56. Straschill, M. and Hoffmann, K.P. (1969) Response characteristics of movement detecting neurones in the cat’s pretectal region, Exp. Neurol. 25:165–176.PubMedCrossRefGoogle Scholar
  57. Thompson, H.S. (1987) The pupil, In: Adler’s Physiology of the Eye. Clinical Application, 8th edition. (Eds. Robert A. Moses and William M. Hart). The C.V.Mosby Company, St Louis, Washington D.C., Toronto, pp 311–338.Google Scholar
  58. Thompson, H.S., Montague, P., Cox, T.A. and Corbett, J.J. (1982) The relationship between visual acuity, pupillary defect and visual field loss, Amer. J. Ophthalmol. 93:681–688.Google Scholar
  59. Trejo, L.J. and Cicerone, C.M. (1984) Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat, Brain Res. 300:49–62.PubMedCrossRefGoogle Scholar
  60. Trejo, L.J., Rand, M.N. and Cicerone, C.M. (1989) Consensual pupillary light reflex in the pigmented rat, Vision Res. 29:303–307.PubMedCrossRefGoogle Scholar
  61. Weber, J.T. and Harting, J.K. (1980) The efferent projections of the pretectal complex: an autoradiographic study and horseradish peroxidase analysis, Brain Res. 194:1–28.PubMedCrossRefGoogle Scholar
  62. Westheimer, G. (1964) Pupil size and visual resolution, Vision Res. 4:39–45.PubMedCrossRefGoogle Scholar
  63. Woodhouse, J.M. and Campbell, F.W. (1975) The role of the pupil light reflex in aiding adaptation to the dark, Vision Res. 15:649–653.PubMedCrossRefGoogle Scholar
  64. Young, M.J. and Lund, R.D. (1994) The anatomical substrates subserving the pupillary light reflex in rats: Origin of the consensual pupillary response, Neurosci. 62:481–496.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. J. Clarke
    • 1
  • P. D. R. Gamlin
    • 1
  1. 1.Vision Science Research CenterUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations