Skip to main content

Postnatal Development of Neurotransmitter Systems in the Mammalian Retina

  • Chapter
Basic and Clinical Perspectives in Vision Research
  • 61 Accesses

Abstract

The mammalian retina is not fully developed at birth and many mammals eyes do not open for many days post partum. Much of the gross morphological development is complete before the eyes open. For example in the cat retina most of the morphological development is complete by postnatal day (PND) 40 (Fig. 1.), whilst spatial resolution of the cells in the lateral geniculate nucleus (Ikeda & Tremain, 1978), visual acuity measured by visual evoked potentials (Freeman & Marg, 1975) or behaviourally (Mitchell et al, 1976) have not reached adult levels until PND 100. Likewise in humans, the time to reach adult like visual acuity is 3–5 years (Teller & Movshon, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, H.B. and Pettigrew, J.D. (1971) Lack of specificity in neurones in the visual cortex of young kittens, J. Physiol. 218:739–744.

    Google Scholar 

  • Bodenant, C., Leroux, P., Gonzalez, B. J. and Vaudry, H. (1991) Transient expression of somatostatin receptors in the rat visual system during development, Neurosci. 41:595–606.

    Article  CAS  Google Scholar 

  • Bodnarenko, S.R. and Chalupa, L.M. (1993) Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina, Nature 364:144–146.

    Article  PubMed  CAS  Google Scholar 

  • Bonds, A.B. and Freeman, R.D. (1978) Development of optical quality in the kitten eye, Vision Res. 18:391–398.

    Article  PubMed  CAS  Google Scholar 

  • Casini, G. and Brecha, N.C. (1992) Postnatal development of tyrosine hydroxylase immunoreactive amacrine cells in the rabbit retina: I morphological characterisation, J. Comp. Neurol. 326:283–301.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. (1987) Postnatal development of phenylethanolamine-N-methyltransferase activity of rat retina, Neurosci. Lett. 83:138–142.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. and Neff, N.N. (1982) Retinal amacrine cell system tyrosine hydroxylase: the development of responsiveness to light and neuroleptic drugs, Develop. Brain Res. 3:160–163.

    Article  CAS  Google Scholar 

  • Cutcliffe, N. and Osborne, N.N. (1987) Serotonergic and cholinergic stimulation of inositol phosphate formation in the rabbit retina. Evidence for the presence of serotonin and muscarinic receptors, Brain Res. 421:95–104.

    Article  PubMed  CAS  Google Scholar 

  • Dann, J.F. (1989) Cholinergic amacrine cells in the developing cat retina, J. Comp. Neurol. 289:143–155.

    Article  PubMed  CAS  Google Scholar 

  • Dann, J.F., Buhl, E.H. and Peichl, L. (1988) Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina, J. Neurosci. 8:1485–1499.

    PubMed  CAS  Google Scholar 

  • Donovan, A. (1966) The postnatal development of the cat retina, Exp. Eye Res. 5:249–254.

    Article  PubMed  CAS  Google Scholar 

  • Ferriero, D.M. (1992) Developmental expression of somatostatin receptors in the rat retina, Develop. Brain Res. 67:309–315.

    Article  CAS  Google Scholar 

  • Ferriero, D.M., Head, V.A., Edwards, R.H. and Sagar, S.M. (1990) Somatostatin mRNA and molecular forms during development of the rat retina, Develop. Brain Res. 57:15–19.

    Article  CAS  Google Scholar 

  • Ferriero, D.M. and Sagar, S.M. (1987) Development of somatostatin immunoreactive neurons in rat retina, Develop. Brain Res. 34:207–214.

    Article  Google Scholar 

  • Ferriero, D.M. and Sagar, S.M. (1989) Development of neuropeptide Y-immunoreactive neurons in the rat retina, Develop. Brain Res. 48:19–26

    Article  CAS  Google Scholar 

  • Ferriero, D.M., Sheldon, R.A. and Domingo, J. (1992) Somatostatin is altered in developing retina from ethanol-exposed rats, Neurosci. Lett. 147:29–32.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, D.N. and Marg, E. (1975) Visual acuity development coincides with the sensitive period in kittens, Nature 254:614–615.

    Article  PubMed  CAS  Google Scholar 

  • Fry, K.R., Chen, N-X., Glazebrook, P. A. and Lam, D.M-K. (1991) Postnatal development of ganglion cells in the rabbit retina: characterisations with AB5 and GABA antibodies, Develop. Brain Res. 61:45–53.

    Article  CAS  Google Scholar 

  • Fung, S-K., Kong, Y-C. and Lam, D.M-K. (1982) Prenatal development of GABAergic, glycinergic and dopaminergic neurons in the rabbit retina, J. Neurosci. 2:1623–1632.

    PubMed  CAS  Google Scholar 

  • Gentleman, S., Hemmings, B.A., Russell, P. and Chader, G.J. (1989) Developmental expression of the RI subunit of cyclic AMP-dependent protein kinase in retina, Exp. Eye Res. 48:717–731.

    Article  PubMed  CAS  Google Scholar 

  • Guameri, P., Corda, M.G., Concas, A., Salis, M., Caldeini, G., Toffano, G. and Biggio, G. (1982) Age related changes of benzodiazepine and GABA binding sites in the rat retina, Neurobiol. Aging 3:227–231.

    Article  Google Scholar 

  • Hamasaki, D.I. and Flynn, J.T. (1977) Physiological properties of retinal ganglion cells of 3-week-old kittens, Vision Res. 17:275–284.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki, D.I. and Sutija, V.G. (1979) Development of X-and Y-cells in kittens. Exp. Brain Res. 35:9–23.

    PubMed  CAS  Google Scholar 

  • Hoover, F. and Goldman, D. (1992) Temporally correlated expression of nAChR genes during development of mammalian retina, Exp. Eye Res. 54:561–565.

    Article  PubMed  CAS  Google Scholar 

  • Hubei, D.H., and Wiesel, T.H. (1963) Receptive fields of cells in the striate of very young, visually inexperienced kittens, J. Neurophysiol. 26:994–1002.

    Google Scholar 

  • Hubei, D.H. and Wiesel, T.N. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol. 206:419–436.

    Google Scholar 

  • Huttenlocker, P.R. (1967) Development of cortical neuronal activity in the neonatal cat, Exp. Neurol. 17:347–415.

    Google Scholar 

  • Ikeda, H. (1979) Physiological basis of visual acuity and its development in kitten, Child Care Health Develop. 5:375–383.

    Article  CAS  Google Scholar 

  • Ikeda, H. (1985) Transmitter actions at the cat retinal ganglion cells, Prog. Retinal Res. 4:1–32.

    Article  CAS  Google Scholar 

  • Ikeda, H., Kay, C.D., and Robbins, J. (1989) Properties of excitatory amino acid receptors on sustained retinal ganglion cells in the cat retina, Neurosci. 32:27–38.

    Article  CAS  Google Scholar 

  • Ikeda, H., Priest, T.D., Robbins, J. and Wakakuwa K. (1986) Silent dopaminergic synapse at feline retinal ganglion cells, Clin. Vision Sci. 1:25–38.

    Google Scholar 

  • Ikeda, H. and Robbins, J. (1984) Development of inhibitory transmission at the retinal ganglion cells in cats. In Development of visual pathways in mammals, Eds Stone, J. Dreher, B. and Rapaport D.H., Alan R. Liss Inc. New York, pp 115-124.

    Google Scholar 

  • Ikeda, H. and Robbins, J. (1985a) Postnatal development of GABA-and glycine-mediated inhibition of feline retinal ganglion cells in the area centralis, Develop. Brain Res. 23:1–17.

    Article  CAS  Google Scholar 

  • Ikeda, H. and Robbins, J. (1985b) Postnatal development of GABA and glycine actions on the surround inhibition of cat retinal ganglion cells in the area centralis. In. Neurocircuitry of the retina: a Cajal memorial. Eds Gallego, A. & Gouras, P. Elsevier, New York, pp. 257–264.

    Google Scholar 

  • Ikeda, H. and Robbins, J. (1989) Development of neurochemical segregation of ON and OFF retinal channels which subserve contrast vision. In: Seeing contour and colour, Eds Kulikowski, J.J., Dickinson, C.M. and Murray, I.J. Pergamon Press, Oxford, pp 164–166.

    Google Scholar 

  • Ikeda, H., Robbins, J. and Kay, C. (1990) Excitatory amino acid receptors on sustained retinal ganglion cell in the kitten during the critical period of development, Develop. Brain Res. 51:85–91.

    Article  CAS  Google Scholar 

  • Ikeda. H., Robbins. J. and Wakakuwa, K. (1987) Evidence for dopaminergic innervation on kitten retinal ganglion cells. Develop. Brain Res. 35:83–89.

    Article  CAS  Google Scholar 

  • Ikeda, H. and Tremain, K.E. (1978) The development of spatial resolving power of lateral geniculate neurones in kittens. Exp. Brain Res. 31:193–206.

    PubMed  CAS  Google Scholar 

  • Ikeda, H. and Tremain, K.E. (1979) Amblyopia occurs in retinal ganglion cells in cats reared with convergent squint without alternating fixation, Exp. Brain Res. 35:559–582.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, S.G., Ikeda, H. and Ruddock, K. (1987) Cone mediated retinal function in cats during development, Docum. Ophthalmol. 65:7–14.

    Article  CAS  Google Scholar 

  • Kato, S., Nakamura, T. and Negishi, K. (1980) Postnatal development of dopaminergic cells in the rat retina, J. Comp. Neurol. 191:227–236.

    Article  Google Scholar 

  • Lam, D.M-K., Fung, S-C. and Kong, Y-C. (1980) Postnatal development of GABA-ergic neurons in the rabbit retina, J. Comp. Neurol. 193:89–102.

    Article  PubMed  CAS  Google Scholar 

  • Lankford, K.L., DeMello, F.G. and Klein, W.L. (1988) Dl-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system, Proc. Natl Acad Sci. USA 85:4567–4571.

    Article  PubMed  CAS  Google Scholar 

  • Madtes, Jr, P. and Redburn, D.A. (1982) [3H]GABA binding in developing rabbit retina, Neurochem. Res. 7:495–503.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Martinelli, E., Simon, A., Vigny, A. and Nguyen-Legros, J. (1989) Postnatal development of Tyrosine-Hydroxylase-Immunoreactive cells in the rat retina, Develop. Neurosci. 11:11–25.

    Article  CAS  Google Scholar 

  • Maslim, J. and Stone, J. (1988) Time course of stratification of the dendritic fields of ganglion cells in the retina of the cat, Develop. Brain Res. 44:87–93.

    Article  CAS  Google Scholar 

  • Messersmith. E.K. and Redburn, D.A. (1992) y-Aminobutyric acid immunoreactivity in multiple cell types of the developing rabbit retina, Visual Neurosci. 8:201–211.

    Article  CAS  Google Scholar 

  • Mitchell, D.E., Giffin, F., Wilkinson, F., Anderson, P. and Smith, M.L. (1976) Visual resolution in young kittens. Vision Res. 16:363–366.

    Article  PubMed  CAS  Google Scholar 

  • Mitrofanis, J. and Finlay, B.L. (1990) Developmental changes in the distribution of retinal catecholaminergic neurones in hamsters and gerbils, J. Comp. Neurol. 292:480–494.

    Article  PubMed  CAS  Google Scholar 

  • Mitrofanis, J., Maslim, J. and Stone, J. (1988) Catecholaminergic and cholinergic neurons in the developing retina of the rat, J. Comp. Neurol 276:343–359.

    Article  PubMed  CAS  Google Scholar 

  • Mitrofanis, J., Maslim, J. and Stone, J. (1989) Ontogeny of catecholaminergic and cholinergic cell distributions in the cat’s retina, J. Comp. Neurol. 289:228–246.

    Article  PubMed  CAS  Google Scholar 

  • Mitrofanis, J., Robinson, S.R. and Ashwell, K. (1992) Development of catecholaminergic, Indoleamine-accumulating and NADPH-diaphorase amacrine cells in rabbit retinae, J. Comp. Neurol. 319:560–585.

    Article  PubMed  CAS  Google Scholar 

  • Mitrofanis, J., Robinson, S.R. and Provis, J.M. (1989) Somatostatinergic neurones of the developing human and cat retinae, Neurosci. Lett. 104:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Moore, C.L., Kalil, R. and Richards, W. (1976) Development of myelination in optic tract of the cat, J. Comp. Neurol. 165:125–136.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, W.W. and Kamp. C.W. (1982) Postnatal development of the light response of the dopaminergic neurons in the rat retina, J. Neurochem. 39:283–285.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J.D. (1982) Postnatal development of the area centralis of the kitten retina: an electron microscopic study, J. Anat. 135:255–271.

    PubMed  CAS  Google Scholar 

  • Osborne, N.N. (1985) Interplexiform, horizontal and bipolar-like cells of the rabbit retina take up exogenous serotonin during early developmental stages, Int. J. Develop. Neurosci. 3:643–646.

    Article  CAS  Google Scholar 

  • Osborne, N.N. (1988) Muscarinic stimulation of inositol phosphate formation in rat retina: developmental changes, Vision Res. 28:875–881.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, N.N., Patel, S. Beaton, D.W. and Neuhoff, V. (1986) GABA neurones in retinas of different species and their postnatal development in situ and in culture in the rabbit retina. Cell Tissue Res. 243:117–123.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, D. and Rando, R.R. (1984) Ontogenesis of dopaminergic neurons in the post-natal rabbit retina: pre-and post-synaptic elements. Develop. Brain Res. 13:207–217.

    Article  CAS  Google Scholar 

  • Parkinson, D., Spira, A., Wyse, J.P and Patten, M. (1985) The ontogenesis of the dopaminergic cell in the pre-and postnatal guinea pig retina, Int. J. Develop. Neurosci. 3:157–167.

    Article  CAS  Google Scholar 

  • Pourcho, R.G. (1982) Dopaminergic amacrine cells in the cat retina. Vision Res. 252:101–109.

    CAS  Google Scholar 

  • Priest. T.D., Robbins, J. and Ikeda, H. (1985) The action of inhibitory neurotransmitters y-aminobutyric acid and glycine may distinguish between the area centralis and the peripheral retina in cats, Vision Res. 25:1761–1770.

    Article  PubMed  CAS  Google Scholar 

  • Pritchett, D.B., Sontheimer, H., Shivers, B.D., Ymer, S., Kettenmann, H., Schofield, PR. and Seeburg, PH. (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology, Nature 338:582–585.

    Article  PubMed  CAS  Google Scholar 

  • Puro, D.G., Battelle, B-A. and Hansmann, K.E. (1982) Development of cholinergic neurons of the rat retina, Develop. Biol. 91:138–148.

    Article  PubMed  CAS  Google Scholar 

  • Ramoa, A.S., Campbell, G. and Shatz C.J. (1988) Dendritic growth and remodelling of cat retinal ganglion cells during fetal and postnatal development, J. Neurosci. 8:4239–4261.

    PubMed  CAS  Google Scholar 

  • Redbum, D.A. (1992) Development of GABAergic neurons in the mammalian retina, Prog. Brain Res. 90:133–147.

    Article  Google Scholar 

  • Redburn, D.A., Agarwal, S.H. Messersmith, E.K. and Mitchell, C.K. (1992) Development of the glutamate system in rabbit retina, Neurochem. Res. 17:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Redbum, D.A. and Madtes Jr, P. (1986) GABA-Its role and development in retina, Prog. Retinal Res. 6:69–84.

    Google Scholar 

  • Redburn, D.A. and Mitchell, C.K. (1981) 3H-muscimol binding in synaptosomal fractions from bovine and developing rabbit retinas, J. Neurosci. Res. 6:487–495.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, J. and Ikeda, H. (1989) Benzodiazepines and the mammalian retina: III postnatal development, Brain Res. 479:334–338.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, J., Wakakuwa, K. and Ikeda, H. (1988) Noradrenaline action on cat retinal ganglion cells is mediated by dopamine (D2) receptors, Brain Res. 438:52–60.

    Article  PubMed  CAS  Google Scholar 

  • Rose, G.H. and Lindsley, D.B. (1968) Development of visually evoked potentials in kittens: specific and non-specific responses, J. Neurophysiol. 31:607–623.

    PubMed  CAS  Google Scholar 

  • Rusoff, A.C. (1979) Development of ganglion cells in the retina of the cat. In Developmental neurobiology of vision, Ed. Freeman, R.D. Plenum Press, New York, pp 19–30.

    Chapter  Google Scholar 

  • Rusoff, A.C. and Dubin. M.W. (1977) Development of receptive-field properties of retinal ganglion cells in kittens. J. Neurophysiol. 40:188–1198.

    Google Scholar 

  • Schnitzer, J. and Rusoff, A.C. (1984) Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages, J. Neurosci. 4:2948–2955.

    PubMed  CAS  Google Scholar 

  • Schliebs, R., Rothe, T. and Bigl, V. (1986) Dark-rearing affects the development of benzodiazepine receptors in the central visual structures of rat brain, Develop. Brain Res. 24:179–185.

    Article  CAS  Google Scholar 

  • Spira, A. W. and Parkinson, D. (1991) Effects of dark-rearing on the retinal dopaminergic system in the neonatal and postnatal guinea pig, Develop. Brain Res. 62:142–145.

    Article  CAS  Google Scholar 

  • Teller, D.Y. and Movshon, J.A. (1986) Visual development, Vision Res. 26:1483–1506.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S.A., Matsumoto, A.M. and Palmiter, R.D. (1995) Noradrenaline is essential for mouse fetal development, Nature 374:643–646.

    Article  PubMed  CAS  Google Scholar 

  • Tootle, J.S. and Friedlander, M.J. (1989) Postnatal development of the spatial contrast sensitivity of X-and Y-cells in the kitten retinogeniculate pathway, J. Neurosci. 9:1325–1340.

    PubMed  CAS  Google Scholar 

  • Tucker, G.S. (1978) Light microscopic analysis of the kitten retina: postnatal development in the area centralis, J. Comp. Neurol. 180:489–500.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, G.S., Hamasaki, D.I., Labbie, A. and Muroff, J. (1979) Anatomic and Physiologic development of the photoreceptor of the kitten, Exp Brain Res. 37:459–474.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, M. (1978) Postnatal development of the cat’s retina, Adv. Anat. Embiyol. Cell Biol. 54:1–66.

    CAS  Google Scholar 

  • Wang, H-H., Cuenca, N. and Kolb, H. (1990) Development of morphological types and distribution patterns of amacrine cells immunoreactive to tyrosine hydroxylase in the cat retina, Visual Neurosci. 4:159–175.

    Article  CAS  Google Scholar 

  • Wassle, H. (1988) Dendritic maturation of retinal ganglion cells, Trends Neurosci. 11:87–89.

    Article  PubMed  CAS  Google Scholar 

  • White, C.A. and Chalupa, L.M. (1992) Ontogeny of somatostatin immunoreactivity in the cat retina, J. Comp. Neurol. 317:129–144.

    Article  PubMed  CAS  Google Scholar 

  • Windle, W.F. (1930) Normal behavioural reactions of kittens correlated with the postnatal development of nerve-fibre density in spinal grey matter, J. Comp. Neurol. 50:479–503.

    Article  Google Scholar 

  • Wollner, D.A., Scheinman, R. and Catterall, W.A. (1988) Sodium channel expression and assembly during development of retinal ganglion cells, Neuron 1:727–737.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R.O.L. and Collin, S.P (1989) Dendritic maturation of displaced putative cholinergic amacrine cells in the rabbit retina, J. Comp. Biol. 287:164–178.

    CAS  Google Scholar 

  • Wulle, I. and Schnitzer, J. (1989) Distribution and morphology of tyrosine hydroxylase-immunoreactive neurons in the developing mouse retina, Develop. Brain Res. 48:59–72.

    Article  CAS  Google Scholar 

  • Yeh, H.H., Battelle, B-B. and Puro, D.G. (1983) Maturation of Neurotransmission at cholinergic synapses formed in culture by rat retinal neurones: regulation by cyclic AMP, Develop. Brain Res. 10:63–72.

    Article  CAS  Google Scholar 

  • Yew, D.T., Luo, C.B., Zheng, D.R. Guan, Y.L. Tsang, D. and Stadlin, A. (1991) Immunohistochemical localisation of substance P, enkephalin and serotonin in the developing human retina, J. Hirnforsh. 32:61–71.

    CAS  Google Scholar 

  • Zetterstrom, B. (1955) The effect of light on the appearance and development of the electroretinogram in newborn kittens, Acta Physiol. Scand. 35:272–279.

    Article  Google Scholar 

  • Zhang, D., Gallagher, M., Sladek, C.D. and Yeh, H.H. (1990) Postnatal development of corticotropin releasing factor-like immunoreactive amacrine cells in the rat retina, Develop. Brain Res. 51:185–194.

    Article  CAS  Google Scholar 

  • Zhang, D. and Yeh, H.H. (1990) Histogenesis of corticotrophin releasing factor-like immunoreactive amacrine cells in the rat retina, Develop. Brain Res. 53:194–199.

    Article  CAS  Google Scholar 

  • Zhang, D. and Yeh, H.H. (1991a) Corticotrophin releasing factor-like immunoreactivity (CRF-LI) in horizontal cells of the developing rat retina, Visual Neurosci. 6:383–391.

    Article  CAS  Google Scholar 

  • Zhang, D. and Yeh, H.H. (1991b) Protein kinase C-like immunoreactivity in rod bipolar cells of the rat retina: a developmental study. Visual Neurosci. 6:429–437.

    Article  CAS  Google Scholar 

  • Zhang, D. and Yeh, H.H. (1992) Substance-P-like immunoreactive amacrine cells in the adult and the developing rat retina, Develop. Brain Res. 68:55–65.

    Article  CAS  Google Scholar 

  • Zhou, Q-Y., Quaife, C.J. and Palmiter, R.D. (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374:640–643.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robbins, J., Ikeda, H. (1995). Postnatal Development of Neurotransmitter Systems in the Mammalian Retina. In: Robbins, J.G., Djamgoz, M.B.A., Taylor, A. (eds) Basic and Clinical Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9362-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9362-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9364-2

  • Online ISBN: 978-1-4757-9362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics