Advertisement

A Study of Pupil Response Components in Human Vision

  • John L. Barbur

Abstract

The accepted classical view of the pupil response to light is that the ambient light level determines largely the steady-state size of the pupil (Lowenstein et al, 1964) and that rapid increments in light flux on the retina cause a brisk constriction of the pupil, that is often described as the dynamic pupil light reflex response (Stark & Shermann, 1957; Alexandridis, 1985; Lowenfeld, 1993). The afferent pathways involved in the control of the pupil in man have been associated with subcortical projections and this is consistent with clinical observations which suggest that the pupils continue to respond normally to sudden changes in room illumination even when the patients are corticaliy blind (Brindley et al, 1969). The response of the pupil often represents an important measurement in neurological and ophthalmologic examinations, but the poor understanding of the visual pathways involved and the kind of stimulus characteristics that cause pupillary responses limit the usefulness and potential use of such tests. Animal studies have contributed significantly to our understanding of the afferent neural pathways that subserve the Pupil Light Reflex response (PLR) in man and helped to reinforce the accepted classical view. Lesion studies combined with measurements of pupil responses before and after surgery in monkey have demonstrated the direct invol vement of the pretectal olivary nuclei and the Edinger-Westphal nuclei in both the steady state control of pupil size and the dynamic PLR response (Pierson & Carpenter, 1974). In rat, the control of the pupil response is somewhat less complicated and functionally more consistent with the regulation of retinal illuminance (Clarke & Ikeda, 1985a, b). The pupil diameter follows an almost linear relationship when plotted as a function of the logarithm of retinal illuminance over a wide range.

Keywords

Pupil Size Pupil Diameter Light Flux Pupil Response Luminance Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandridis, E. (1985) The Pupil, Springer-Verlag, New-York.CrossRefGoogle Scholar
  2. Atkinson, J. (1984) Human visual development over the first 6 months of life. A review and a hypothesis., Human Neurobiol. 3:61–74.Google Scholar
  3. Atkinson, J. (1992) Early visual development: differential functioning of parvocellular and magnocellular pathways, Eye 6:129–135.PubMedCrossRefGoogle Scholar
  4. Baker CL & Braddick OJ (1982) The basis of area and dot number effects in random dot motion perception, Vision Res. 22:1253–1260.PubMedCrossRefGoogle Scholar
  5. Barbur, J. L., Birch, J., Harlow, A. J. and Plant, G. (1992c) The pupil colour response (evidence for involvement of central neural mechanisms), Perception. 21:74.Google Scholar
  6. Barbur, J. L., Ruddock, K. H. and Waterfield, V. A. (1980) Human visual responses in the absence of the geniculo-calcarine projection, Brain 03:905–928.CrossRefGoogle Scholar
  7. Barbur, J. L., Thomson, W. D. and Forsyth, P. M. (1987) A new system for the simultaneous measurement of pupil size and two-dimensional eye-movements., Clin. Vis. Sci. 2:131–142.Google Scholar
  8. Barbur, J. L., Birch, J. and Harlow, J. A. (1993) Colour vision testing using spatiotemporal luminance masking. In Colour vision deficiencies XI (Ed. B. Drum) 417–426. Kluwer Academic Publishers, Dordrecht.Google Scholar
  9. Barbur, J. L., Harlow, A.J., Sahraie, A., Stoerig, P. and Weiskrantz, L. (1994a). Responses to chromatic stimuli in the absence of VI: pupillometric and psychophysical studies. In: Noninvasive Assessment of the Visual System Technical Digest. Optical Society of America, Washington, D.C. 2:312–315.Google Scholar
  10. Barbur, J. L., Watson, J. D. G., Frackowiak, R. S. J. and Zeki S. (1993). Conscious visual perception without VI, Brain 16:1293–1302.CrossRefGoogle Scholar
  11. Barbur, J. L., Holliday, I. K. and Ruddock, K. H. (1981). The spatial and temporal organisation of motion perception units in human vision, Acta Psychologica 48:35–47.PubMedCrossRefGoogle Scholar
  12. Barbur, J. L., Birch, J. and Harlow, J. A. (1992b) Threshold and suprathreshold responses to chromatic stimuli using psychophysical and pupillometric methods. In NAVS Technical Digest OSA, Washington, D.C. 1:51–54.Google Scholar
  13. Barbur J. L. (1991a) Pupillary responses to grating stimuli, J. Psychophysiol. 5:259–263.Google Scholar
  14. Barbur, J. L. (1991b) Pupillary responses to stimulus structure and colour: possible mechanisms Noninvasive Assessment of the Visual System Technical Digest, Optical Society of America, Washington, D.C. 1:68–71.Google Scholar
  15. Barbur, J. L., Cole, V., Harlow, J. and Sahraie, A. (1995) Pupil Colour and light reflex Responses in the periphery of the visual field, Invest. Ophthalmol. Vis. Sci. 36:660.Google Scholar
  16. Barbur, J. L. (1991c). Methods for studying the behaviour of the pupil, J. Psychophysiol. 5:223–239.Google Scholar
  17. Barbur, J. L. and Forsyth, P. M. (1986). Can the pupil response be used as a measure of the visual input associated with the geniculo-striate pathway, Clin. Vis. Sci. 1:107–111.Google Scholar
  18. Barbur, J. L. (1988). Spatial frequency-based methods and their use in clinical psychophysics. Clin. Vis. Sci. 2:225–233.Google Scholar
  19. Barbur, J. L., Forsyth, P. M. and Thomson, D. W. (1988). A new system for the simultaneous measurement of pupil size and two dimensional eye-movements, Clin. Vis. Sci. 2:31–142.Google Scholar
  20. Barbur, J. L. and Ruddock, K. H. (1980). Spatial characteristics of movement detecting mechanisms in human vision. I. Chromatic stimuli, Biological Cybernetics 37:77–92.PubMedCrossRefGoogle Scholar
  21. Barbur, J. L., Harlow, A. J. and Plant, G. (1994b). Insights into the different exploits of colour in the visual cortex, Proc. R. Soc. Lond. B, 258:327–334.CrossRefGoogle Scholar
  22. Barbur, J. L., Harlow, J. A. and Sahraie, A. (1992a) Pupillary responses to stimulus, structure, colour and movement, Ophthal. Physiol. Optics 12:137–141.CrossRefGoogle Scholar
  23. Barbur, J. L., Keenleyside, M. and Thomson, D. W. (1988). Investigation of central visual processing by means of pupillometry, In Seeing Colour and Contour’, Eds. Kulikowski, J. J., Dickinson, C. M. and Murray, I. J. Proceedings of The Third International Symposium of the Northern Eye Institute pp 431-451.Google Scholar
  24. Braddick, O., Atkinson J., Hood, B., Harkness, W. and Vargha-Khadem, F. (1992). Possible blindsight in infants lacking one cerebral hemisphere, Nature 360:461–463.PubMedCrossRefGoogle Scholar
  25. Braddick, O. J., Wattam-Bell, J. and Atkinson, J. (1986). Orientation-specific cortical responses develop in early infancy, Nature 320:617–619.PubMedCrossRefGoogle Scholar
  26. Brindley, G. S., Gautier-Smith, P. C., and Lewin, W. (1969). Cortical blindness and the functions of the non-geniculate fibres of the optic tracts, J. Neurol. Neurosurg. Psychiatr. 32:259–264.PubMedCrossRefGoogle Scholar
  27. Cibis, G. W., Campos, E. C. and Aulhorn, E. (1975). Pupillary hemiakinesia in suprageniculate lesions, Arch. Ophthalmol. 12:1322–1327.CrossRefGoogle Scholar
  28. Clarke, R. J. and Ikeda, H. (1985a). Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat. I. Studies using steady luminance levels, Exp. Brain Res. 57:224–232.PubMedCrossRefGoogle Scholar
  29. Clarke, R. J. and Ikeda, H. (1985b). Luminance detectors in the olivary pretectal nucleus and their relationship to the pupillary light reflex in the rat. II. Studies using sinusoidal light., Exp. Brain Res. 59:83–90.PubMedCrossRefGoogle Scholar
  30. Cocker, K. D. and Moseley, M. J. (1991). The pupil grating response and visual acuity. In: JOSA Technical Digest on Non-invasive Assessment of the Visual System, Optical Society of America, Washinton DC. 1:113–116.Google Scholar
  31. Cocker, K. D., Moseley, M. J., Bissenden, J. G. and Fielder, A. R. (1994) Visual acuity and pupillary tresponses to spatial structure in infants, Invest. Ophthalmol. Vis. Sci. 35:2620–2625.PubMedGoogle Scholar
  32. Cole, V., Barbur, J. L. and Harlow, H. J. (1995). Pupil light reflex components isolated using luminance contrast and light flux masking techniques, Invest. Ophthalmol. Vis. Sci. 36:940.Google Scholar
  33. Cowey, A. and Stoerig, P. (1991). The neurobiology of blindsight, Trends in Neurosci. 14:140–145.CrossRefGoogle Scholar
  34. Dubowitz, L. M. S., Mushin, J., de Vreis, L. and Arden, G. B. (1986). Visual function in the newborn infant: is it cortically mediated?. Lancet. May 17:1139–1141.CrossRefGoogle Scholar
  35. Fielder, A. R., Russell-Eggitt, I. R., Dodd, K. L. and Mellor, D. H. (1985) Delayed visual maturation, Trans. Ophthalmol. Soc. UK, 104:653–661.PubMedGoogle Scholar
  36. Fielder, A. R. and Nicholson, J. (1990). Delayed visual maturation—ophthalmic and nadiodevelopmental aspects, Dev. Med. Child Neurol. 32:872–881.PubMedGoogle Scholar
  37. Gunn, R. M. (1902). Functional or hysterical amblyopia, Ophthalmol. Rev. 21:271–280.Google Scholar
  38. Hardy, L. H., Rand, C. and Rittler, M. C. (1954). H-R-R Polychromatic Plates, J. Opt. Soc. Am. 44:509–523.CrossRefGoogle Scholar
  39. Harms, H. (1951) Hemianopische Pupillenstarre., Klin Monatsbl Augenheilkd 118:133–147Google Scholar
  40. Jacobs, D. S. and Blakemore, C. (1988). Factors limiting the postnatal development of visual acuity in the monkey, Vision Res. 28:947–958.PubMedCrossRefGoogle Scholar
  41. Kardon, R. H.(1992). Pupil Perimetry. Editorial review, Curr. Opin. Ophthalmol. 3:565–570.PubMedCrossRefGoogle Scholar
  42. Keenleyside, M. S. (1990). Pupillometry and assessment of visual function. PhD thesis, University of Oxford.Google Scholar
  43. Kimura, E. and Young, R. S. L. (1995). Nature of the pupillary responses evoked by Chromatic Flashes on a white background, Vision Res. 35:897–906.PubMedCrossRefGoogle Scholar
  44. Kohn, M. and Clynes, M. (1969). Colour dynamics of the pupil., Ann.New York Acad. Sci. 156:931–950.CrossRefGoogle Scholar
  45. Levatin, P., Prasloski, P. F. and Collen, M. F. (1973). The swinging flashlight test in multiphasic screening for eye disease, Can. J. Ophthalmol. 8:356–360.PubMedGoogle Scholar
  46. Levatin, P. (1959). Pupillary escape in disease of the retina and optic nerve, Arch. Ophthalmol. 62:768–779.PubMedCrossRefGoogle Scholar
  47. Loewenfeld, I. E. (1993). The Pupil: Anatomy, physiology, and clinical applications. Vol 1, Iowa State University Press.Google Scholar
  48. Lowenstein, O., Kawabata, H. and Loewenfeld, I. E. (1964). The pupil as indicator of retinal activity. Am. J. Ophthalmol. 57:569–596.PubMedGoogle Scholar
  49. Lynn, P. A. (1992). Digital signals, processors and noise. Macmillan New Electronics Series, Macmillan Press Ltd.Google Scholar
  50. Perry, V. H. and Cowey, A. (1984). Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey, Neurosci. 12:1125–1137.CrossRefGoogle Scholar
  51. Pierson, R. J. and Carpenter, M. B. (1974). Anatomical analysis of pupillary reflex pathways in the rhesus mankey. J. Comp. Neurol. 158:121–144.PubMedCrossRefGoogle Scholar
  52. Reffin, J. P., Astell, S. and Mollon, J. D.(1991). Trials of a computer-controlled colour vision test that preserves the advantages ofpseudoisochromatic plates. In Colour vision deficiencies X, pp 69–76. Eds. B. Drum, J. D. Moreland and A. Serra, Kluwer Academic Publishers, Dordrecht, Netherlands.CrossRefGoogle Scholar
  53. Sahraie, A. (1993) Some aspects of the pupil response in relation to stimulus movement and colour. PhD thesis, City University.Google Scholar
  54. Saini, V. D. and Cohen, G. H. (1979). Using colour substitution pupil response to expose chromatic mechanisms, J. Optical Soc. Am. 26:1029–1035CrossRefGoogle Scholar
  55. Slooter, J. H. and van Noren, D. (1980). Visual acuity measured with pupil responses to checkerboard stimuli, Invest. Ophthalmol. Vis.Sci 19:105–108.PubMedGoogle Scholar
  56. Stark, L. and Shermann, P. M. (1957). A servoanalytic study of consensual pupil reflex to ligh, J. Neurophysiol. 20:17–26.PubMedGoogle Scholar
  57. Stoerig, P. and Cowey, A. (1993) Blindsight: neurons and behaviour, Prog. Brain Res. 95:445–459.PubMedCrossRefGoogle Scholar
  58. Taylor, D. S. I. (1990) Pediatric Ophthalmology, Blackwell. Oxford pp 561.Google Scholar
  59. Ukai, K. (1985). Spatial pattern as a stimulus to the pupillary system, J. Opt. Soc. Am. 2:1094–1100.CrossRefGoogle Scholar
  60. Wyszecki, G. and Stiles, W. S. (1982). Colour Science, Concepts and Methods, Quantitative Data and Formulae, 2nd edition, John Wiley, New-York.Google Scholar
  61. Young, R. S. L. and Alpern, M. (1980). Pupil responses to foveal exchange of monochromatic lights, J. Opt. Soc. Am. 70:697–706.PubMedCrossRefGoogle Scholar
  62. Young, R. S. L. and Kennish, J. (1993). Transient and sustained components of the pupil response evoked by achromatic spatial patterns, Vision Res. 33:2239–2252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John L. Barbur
    • 1
  1. 1.Applied Vision Research Centre, Department of Optometry and Visual ScienceCity University Northampton SquareLondonUK

Personalised recommendations