New Methods in Electron Microscopy Help Elucidate the Structure of the Murein Sacculus and the Distribution of Penicillin-Binding Proteins

  • Terry J. Beveridge
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)


Since bacteria are so small (usually about 1.5–2.5 μm3), microbiologists have relied on microscopy to differentiate single bacteria from their neighbours, to determine cellular shape and form, to distinguish gram-negative cultures from gram-positive ones, and to detect the position of envelope adornments (e.g., flagella and capsules). These characteristics could usually be determined by light microscopy and it was not until the early 1950s that more detail was discovered by electron microscopy (Chapman and Hillier, 1953). The absence of a nucleus was confirmed, and the unequivocal detection of cell wall layers, and their contribution to cell division, outside a bilayered plasma membrane was established (Murray et al, 1965). These were halcyon days for microbial structure since electron microscopy was capable of discerning most of the structural bits and pieces which composed intact bacterial cells (Holt and Beveridge, 1982). Ribosomes and chromosomal DNA fibres could be discerned within the cytoplasm, and gram-positive and gram-negative bacteria could be distinguished by their cell envelope profiles. The former possessed an amorphous, electron dense wall above the plasma membrane, whereas the later possessed a more complex profile consisting of a thin peptidoglycan layer sandwiched between a plasma membrane and an outer membrane (Beveridge, 1981). Indeed, these early observations of envelope profiles by thin section firmly established the existence of a periplasmic space (i.e., a region encompassing or surrounding the cellular plasm) and, later, of Bayer’s so-called “adhesion zones” (Bayer, 1974) in gram-negative bacteria.


Outer Membrane Periplasmic Space Substitution Medium Filament Terminus Thin Freeze Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amako, K., and Takade, A. (1985) The fine structure of Bacillus subtilis revealed by the rapid-freezing and subsitution-fixation method. J. Electron Microsc. 34,13–17.Google Scholar
  2. Amako, K., Murata, K. and Umeda, A. (1983) Structure of the envelope of Escherkhia coli observed by the rapid-freezing and substitution fixation method. Microbiol. Immunol. 27, 95–99.PubMedGoogle Scholar
  3. Amako, K., Okada, K. and Miake, S. (1984) Evidence for the presence of a capsule in Vibrio vulnificus. J. Gen. Microbiol. 130, 2741–2743.PubMedGoogle Scholar
  4. Amako, K., Meno, Y. and Takade, A. (1988) Fine structures of the capsules of Klebsiella pneumoniae and Escherichia coli K1. J. Bacteriol. 170, 4960–4962.PubMedGoogle Scholar
  5. Armbruster, B.L., Carlemalm, E., Chiovetti, R., Garavito, R.M., Hobot, J.A., Kellenberger, E. and Villiger, W. (1982) Specimen preparation for electron microscopy using low temperature embedding resins. J. Microsc. 126, 77–85.PubMedCrossRefGoogle Scholar
  6. Bayer, M.E. (1968) Areas of adhesion between wall and membrane of Escherichia coli. J. Gen. Microbiol. 53, 395–404.PubMedCrossRefGoogle Scholar
  7. Bayer, M.H., Keck, W. and Bayer, M.E. (1990) Localization of penicillin-binding protein lb in Escherichia coli immunoelectron microscopy and immunotransfer studies J. Bacteriol. 172, 125–135.PubMedGoogle Scholar
  8. Beveridge, T.J. (1981) Ultrastructure, chemistry, and function of the bacterial wall. Int. Rev. Cytol. 72, 229–317.PubMedCrossRefGoogle Scholar
  9. Beveridge, T.J. (1988a) The bacterial surface: general considerations towards design and function. Can. J.Microbiol. 34, 363–372.PubMedCrossRefGoogle Scholar
  10. Beveridge, T.J. (1988b) Wall ultrastructure: how little we know, in “Antibiotic Inhibition of Bacterial cell Surface Assembly and Function” (Actor, P., Daneo-Moore, L., Higgins, M.L., Salton, M.R.J., and Shockman, G.D., eds.), p.3–20. Amer. Soc. Microbiol., Washington, D.C.Google Scholar
  11. Beveridge, T.J. (1990) Mechanism of gram variability in select bacteria. J. Bacteriol. 172, 1609–1620.PubMedGoogle Scholar
  12. Beveridge, T.J. and Davies, J.A. (1983) Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain. J. Bacteriol. 156, 846–858.PubMedGoogle Scholar
  13. Beveridge, T.J. and Graham, L.L. (1991) Surface layers of bacteria. Microbiol. Rev. 55, 684–705.PubMedGoogle Scholar
  14. Beveridge, T.J. and Murray, R.G.E. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141, 876–887.PubMedGoogle Scholar
  15. Beveridge, T.J., Harris, R. and Humphrey, R. (1985) Evaluation of conventional and low temperature techniques for the preservation of bacterial structure. Proc. Micros. Soc. Can. 12, 22–23.Google Scholar
  16. Beveridge, T.J., Sprott, G.D. and Whippey, P. (1991) Ultrastructure, inferred porosity, and Gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium. J. Bacteriol. 173, 130–140.PubMedGoogle Scholar
  17. Beveridge, T.J., Popkin, T.J. and Cole, R.M. (1992) Electron microscopy, in “Methods for General and Molecular Bacteriology” (Gerhardt, P., ed.), in press, Amer. Soc. Microbiol., Washington, D.C.Google Scholar
  18. Carlemalm, E., Garavito, R.M. and Villiger, W. (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J. Microsc. 126, 123–143.CrossRefGoogle Scholar
  19. Carlemalm, E., Villiger, W., Hobot, J.A, Acetarin, J.D. and Kellenberger, E. (1985) Low temperature embedding with Lowicryl resins: two new formulations and some applications. J. Microsc. 140, 55–63.PubMedCrossRefGoogle Scholar
  20. Chapman, G.B. and Hillier, J. (1953) Electron microscopy of ultra-thin sections of bacteria. I. Cellular division in Bacillus cereus. J. Bacteriol. 66, 362–373.PubMedGoogle Scholar
  21. Davies, J.A., Anderson, G.K., Beveridge, T.J. and Clark, H.C. (1983) Chemical mechanism of the Gram stain and the synthesis of a new electron-opaque marker for electron microscopy which replaces the iodine mordant of the stain. J. Bacteriol. 156, 837–845.PubMedGoogle Scholar
  22. DiRienzo, J.M., Nakamura, K. and Inouye, M. (1978) The outer membrane of gramnegative bacteriaibiosynthesis, assembly and functions. Annu. Rev. Biochem. 47, 481–532.PubMedCrossRefGoogle Scholar
  23. Dubochet, J., McDowall, A.W., Menge, B., Schmid, E.N. and Lickfeld, K.G. (1983) Electron microscopy of frozen-hydrated bacteria. J. Bacteriol. 155, 381–390.PubMedGoogle Scholar
  24. Dubochet, J. Adrian, M., Chang, J.-J., Lepault, J. and McDowall, A.W. (1987) Cryoelectron microscopy of vitrified specimens, in “Cryotechniques in Biological Electron Microscopy” (Steinbrecht, R.A, and Zierold, K., eds.) p.114–131. Springer-Verlag KG, Berlin.CrossRefGoogle Scholar
  25. Ferris, F.G. and Beveridge, T.J. (1984) Binding of a paramagnetic metal cation to Escherkhia coli K-12 outer membrane vesicles. FEMS Microbiol. Lett. 24, 43–46.CrossRefGoogle Scholar
  26. Ferris, F.G. and Beveridge, T.J. (1986a) Physicochemical roles of soluble metal cations in the outer membrane of Escherkhia coli. Can. J. Microbiol. 32, 594–601.PubMedCrossRefGoogle Scholar
  27. Ferris, F.G. and Beveridge, T.J. (1986a) Site specificity of metallic ion binding in Escherkhia coli K-12 lipopolysaccharide. Can. J. Microbiol. 32, 52–55.PubMedCrossRefGoogle Scholar
  28. Funahara, Y. and Nikaido, H. (1980) Asymmetric location of lipopolysaccharides on the outer membrane of Salmonella typhimurium. J. Bacteriol. 141, 1463–1465.PubMedGoogle Scholar
  29. Graham, L.L. and Beveridge, T.J. (1990a) Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J. Bacteriol. 172, 2141–2149.PubMedGoogle Scholar
  30. Graham, L.L. and Beveridge, T.J. (1990b) Effect of chemical fixatives on accurate preservation of Escherkhia coli and Bacillus subtilis structure in cells prepared by freeze-substitution. J. Bacteriol. 172, 2150–2159.PubMedGoogle Scholar
  31. Graham, L.L., Beveridge, T.J. and Nanninga, N. (1991) Periplasmic space and the concept of the periplasm. Trends Biochem. Sci. 16, 328–329.PubMedCrossRefGoogle Scholar
  32. Graham, L.L., Harris, R., Villiger, W. and Beveridge, T.J. (1991) Freeze-substitution of gram-negative eubacteria: general cell morphology and envelope profiles. J. Bacteriol. 173, 1623–1633.PubMedGoogle Scholar
  33. Hobot, J.A., Carlemalm, E., Villiger, W. and Kellenberger, E. (1984) Periplasmic gel: a new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J. Bacteriol. 160, 143–152.PubMedGoogle Scholar
  34. Hobot, J.A., Villiger, W., Escaig, J., Maeder, M., Ryter, A. and Kellenberger, E. (1985) Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria. J. Bacteriol. 162, 960–971.PubMedGoogle Scholar
  35. Holt, S.C. and Beveridge, T.J. 1982 Electron microscopy: its development and application to microbiology. Can. J. Microbiol. 28, 1–53.PubMedCrossRefGoogle Scholar
  36. Koch, A.L. and Doyle, R.J. (1985) Inside-to-outside growth and the turnover of the gram-positive rod. J. Theor. Biol. 117, 137–157.PubMedCrossRefGoogle Scholar
  37. König, H. (1988) Archaeobacterial cell envelopes. Can. J. Microbiol. 34, 395–406.CrossRefGoogle Scholar
  38. Labischinski, R, Goodell, E.W., Goodell, A. and Hochberg, M.L. (1991) Direct proof of a “more-than-single-layered” peptidoglycan architecture of Escherichia coli W7. A neutron small-angle scattering study. J. Bacteriol. 173, 751–756.PubMedGoogle Scholar
  39. Mühlradt, P.F. and Golecki, J.R. (1975) Asymmetrical distribution and artificial reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium. Eur. J. Biochem. 51, 343–352.PubMedCrossRefGoogle Scholar
  40. Murray, R.G.E., Steed, P. and Elson, H.E. (1965) The location of the mucopeptide in sections of the cell wall of Escherichia coli and other gram-negative bacteria. Can. J. Microbiol. 11, 547–560.PubMedCrossRefGoogle Scholar
  41. Park, J.T. (1987) The murein sacculus, in “Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology” (Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M. and Umbarger, H.E., Eds.), pp. 23–30 Amer. Soc. Microbiol., Washington, D.C.Google Scholar
  42. Paul, T.R., Halligan, N.G., Blaszczak, L, Parr, T.R., Jr. and Beveridge, T.J. (1992a) A new mercury-penicillin V derivative as a probe for ultrastructural location of penicillin-binding proteins in Escherichia coli. J. Bacteriol. (in press).Google Scholar
  43. Paul, T.R., Beveridge, T.J., Halligan, N.G., Blaszczak, L.C. and Parr, T.R., Jr. (1992b) The use of a mercury penicillin derivative to localize penicillin-binding proteins in Escherichia coli, in “Bacterial Growth and Lysis: Metabolism and Structure of the Bacterial Sacculus” (de Pedro, M.A., Höltje, J.-V and Löffelhardt, W., eds). p. —. Plenum Pub. Corp., New York.Google Scholar
  44. Robards, A.W. and Sleytr, U.B. (1985) Low temperature methods in biological electron microscopy. Elsevier Biomewdical Press, Amsterdam.Google Scholar
  45. Silva, M.T. and Sousa, J.C.F. (1973) Ultrastructure of the cell wall and cytoplasmic membrane of gram-negative bacteria with different fixation techniques. J. Bacteriol. 113, 953–962.PubMedGoogle Scholar
  46. Sonnenfeld, E.M., Beveridge, T.J. and Doyle, R.J. (1985) Discontinuity of charge on cell wall poles of Bacillus subtilis. Can. J. Microbiol. 31, 875–877.PubMedCrossRefGoogle Scholar
  47. Stewart, M. and Vigers, G. (1986) Electron microscopy of frozen hydrated biological material. Nature (London) 319, 631–636.CrossRefGoogle Scholar
  48. Stock, J.B., Rauch, B. and Roseman, S. (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 252, 7850–7861.PubMedGoogle Scholar
  49. Taylor, K.A. and Glaeser, R.M. (1976) Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55, 448–456.PubMedCrossRefGoogle Scholar
  50. Weibull, C, Christiansson, A. and Carlemalm E. (1983) Extraction of membrane lipids during fixation, dehydration and embedding of Acholeplasma laidlawii cells for electron microscopy. J. Microsc. 129, 201–207.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Terry J. Beveridge
    • 1
  1. 1.Department of Microbiology, College of Biological ScienceUniversity of GuelphGuelphCanada

Personalised recommendations