Advertisement

Structure Elucidation of Peptidoglycan Monomers by Fast Atom Bombardment- and Electrospray Ionization-Tandem Mass Spectrometry

  • Ernst Pittenauer
  • Günter Allmaier
  • Erich R. Schmid
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

Fast atom bombardment-mass spectrometry (FAB-MS) in combination with tandem mass spectrometry (MS/MS) is now a well established technique for the primary structure elucidation of complex biomolecules like peptides, oligosaccharides, lipids and glycolipids.

Keywords

Collision Induce Dissociation Neisseria Gonorrhoeae Quadrupole Mass Filter Cesium Iodide Plasma Desorption Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, A. J., Thibault, P., Boyd, R. K., Curtis, J. M. and Rinehart, K. L. (1990) Collision induced dissociation of peptide ions. Part 3. Comparison of results obtained using sector-quadrupole hybrids with those from tandem double focusing instruments. Int. J. Mass Spec-trom. Ion Processes 98, 107–134.CrossRefGoogle Scholar
  2. Bean, M. F., Carr, S. A., Thorne, G. C., Reilly, M. H., Gaskell, S. J. (1991) Tandem mass spectrometry of peptides using hybrid and four-sector instruments: a comparative study. Anal. Chem. 63, 1473–1481.PubMedCrossRefGoogle Scholar
  3. Allmaier, G. and Schmid, E. R. (1991) New mass spectrometric techniques for peptidoglycan analysis, see this volume.Google Scholar
  4. Gaskell, S. J. and Reilly, M. H. (1988) Hybrid tandem mass spectrometry of peptides above mass 1000. Rapid Commun. Mass Spectrom. 2, 188–191.PubMedCrossRefGoogle Scholar
  5. Johannsen, L., Rosentnal, R. S., Martin, S. A., Cady, A. B., Obal, O., Guinand, M. and Krueger J. M. (1989) Somnogenic activity of O-acetylated and dimeric muramyl-peptides. Inf. Immun. 57, 2726–2732.Google Scholar
  6. Laine, R. A., Pamidimukkala, K. M., French, A. D., Hall, R. W., Saeed, A. A., Rakesh, K. J. and Khushi L. M. (1988) Linkage position in oligosaccharides by fast atom bombardment ionization, collision-activated dissociation, tandem mass spectrometry and molecular modeling. L-Fucosylp-(α->X)-D-N-acetyl-D-glucosaminylp-(β->3)-D-ga-lactosylp-(β1-O-methyl) where X= 3, 4, or 6. J. Am. Chem. Soc. 110, 6931–6939.CrossRefGoogle Scholar
  7. Martin, S. A., Rosenthal, R. S. and Biemann, K. (1987) Fast atom bombardment and tandem mass spectrometry of biologically active peptidoglycan monomers from Neisseria gonorrhoeae. J. Biol. Chem. 262, 7514–7522.PubMedGoogle Scholar
  8. Martin, S. A. (1988) Mass spectrometry of peptidoglycans, in “Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function” (Actor, P., Daneo-Moore, L., Higgins, M. L., Salton, M. R. J. and Shockman, G. D., Ed.), pp. 129–145. American Society for Microbiology, Washington, DC-Boston.Google Scholar
  9. Mathews, W. R., Runge, T. A., Haroldsen, P. E. and Gaskell, S. J. (1989) Characterization of impurities in a synthetic renin substrate peptide by fast-atom bombardment mass spectrometry and hybrid tandem mass spectrometry. Rapid Commun. Mass Spectrom. 3, 314–319.PubMedCrossRefGoogle Scholar
  10. Medzihradsky, K. F., Gillece-Castro, B. L., Settineri, C. A., Townsend, R. R., Masiarz, F. R. and Burlingame, A. L. (1990) Structure determination of O-linked glycopeptides by tandem mass spectrometry. Biomed. Environ. Mass Spectrom. 19, 777–781.CrossRefGoogle Scholar
  11. Pfanzagl, B., Pittenauer, E., Allmaier, G., Martinez, J., Plaimauer, B., Berenguer, J., Schmid, E., dePedro, M. A. and Löffelhardt, W. (1992) Investigations on structure and biosynthesis of cyanelle murein from Cyanophora paradoxa, see this volume.Google Scholar
  12. Pittenauer, E., Rodriguez, M. C., dePedro, M. A., Allmaier, G. and Schmid, E. R. (1992) HPLC and plasma desorption mass spectrometry of muropeptides isolated from Escherichia coli, see this volume.Google Scholar
  13. Poulter, L. and Taylor, L. C. E. (1989) A comparison of low and high energy collisionally activated decomposition MS-MS for peptide sequencing. Int. J. Mass Spectrom. Ion Processes 91, 183–197.CrossRefGoogle Scholar
  14. Settineri, C. A., Medzihradszky, K. F., Masiarz, F. R., Burlingame, A. L., Chu, C. and Geoge-Nascimento, C. (1990) Characterization of O-glycosylation sites in recombinant B-chain of platelet-derived growth factor expressed in yeast using liquid secondary ion mass spectrometry and Edman sequence analysis. Biomed. Environ. Mass Spectrom. 19, 665–676.PubMedCrossRefGoogle Scholar
  15. Tomasic, J., Sesartic, L., Martin, S. A., Valinger, Z. and Ladesic, B. (1988) Comparative susceptibility of a pep-tidoglycan monomer from Brevibacterium divarication and its anhydromuramyl analogue to hydrolysis with N-acetylmuramyl-L-alanine amidase. Isolation and characterization of anhydromuramyl-peptidoglycan monomer. J. Chromatogr. 440, 405–414.PubMedCrossRefGoogle Scholar
  16. Thome, G. C, Ballard, K. D. and Gaskell, S. J. (1990) Metastable decomposition of peptide [M+H]+ ions via rearrangement involving loss of the C-terminal amino acid residue. J. Am. Soc. Mass Spectrom. 1, 249–257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ernst Pittenauer
    • 1
  • Günter Allmaier
    • 1
  • Erich R. Schmid
    • 1
  1. 1.Institute for Analytical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations