Advertisement

Wall Teichoic Acid, Peptidoglycan Synthesis and Morphogenesis in Bacillus Subtilis

  • Harold M. Pooley
  • François-Xavier Abellan
  • Dimitri Karamata
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

Ever since morphological mutants in several rod-shaped bacteria were isolated (Boylan and Mendelson, 1969; Rogers et al., 1970; Satta et al., 1969), the question of cell shape maintenance has been and remains a central one. We examine a possible role in cell morphogenesis of the interdependence of the syntheses of peptidoglycan and other cell wall components.

Keywords

Bacillus Subtilis Cell Elongation Cell Length Teichoic Acid Cell Morphogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boylan, R.J., and Mendelson, N.H. (1969) Initial characterization of a temperature-sensitive rod” mutant of Bacillus subtilis. J. Bacteriol. 100,1316–1321.PubMedGoogle Scholar
  2. Boylan, R.J., Mendelson, N.H., Brooks, D., and Young, F.E. (1972) Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J. Bacteriol. 110, 281–290.PubMedGoogle Scholar
  3. Briehl, M., Pooley, H.M., and Karamata, D. (1989) Mutants of Bacillus subtilis 168 thermosenskive for growth and wall teichoic acid synthesis. J. Gen. Microbiol. 135, 1325–1334.Google Scholar
  4. Cole, R.M., Popkin, T.J., Boylan, R.J., and Medelson, N.H. (1970) Ultrastructure of a temperature-sensitive rod mutant of Bacillus subtilis. J. Bact. 103, 793–810.PubMedGoogle Scholar
  5. Honeyman, A.L., and Stewart, G.C. (1989) The nucleotide sequence of the rodC operon of Bacillus subtilis. Molec. Microbiol. 3, 1257–1268.CrossRefGoogle Scholar
  6. Karamata, D., Pooley, H.M., and Monod, M. (1987) Expression of heterologous genes for wall teichoic acid in Bacillus subtilis 168. Mol. Gen. Genet. 207, 73–81.PubMedCrossRefGoogle Scholar
  7. Lleo, M.M., Canepari, P., and Satta, G. (1990) Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rod-shaped mutants from some wild-type cocci. J. Bacteriol. 172, 3758–3771.PubMedGoogle Scholar
  8. Mauck, J., and Glaser, L. (1972) On the mode of in vivo assembly of the cell wall of Bacillus subtilis. J. Biol. Chem. 247, 1180–1187.PubMedGoogle Scholar
  9. Mauèl, C, Young, M., Margot, P., and Karamata, D. (1989) The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol. Gen. Genet. 215, 388–394.PubMedCrossRefGoogle Scholar
  10. Mauël, C, Young, M., and Karamata, D. (1991) Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J. Gen. Microbiol. 137, 929–941.PubMedCrossRefGoogle Scholar
  11. Pooley, H.M. (1976) Turn-over and spreading of old wall during surface growth of Bacillus subtilis. J. Bacteriol. 125, 1127–1138.PubMedGoogle Scholar
  12. Pooley, H. M., Paschoud, D., and Karamata, D. (1987). The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP-glucose pyrophosphorylase. Journal of General Microbiology 133, 3481–3493.PubMedGoogle Scholar
  13. Pooley, H.M., Abellan, F.X., and Karamata, D. (1991) A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyl transferase, an enzyme specific for the synthesis of the major wall teichoic acid. J. Gen. Microbiol. 137, 921–928.PubMedCrossRefGoogle Scholar
  14. Pooley, H.M., Abellan, E.X., and Karamata, D. (1992) CDP-glycerol:poly(glycerolphosphate)phosphoglycerotransferase, involved in the synthesis of the major wall teichoic acid in Bacillus subtilis 168, is encoded by tagF(rodC). J. Bacteriol. 174, 646–649.PubMedGoogle Scholar
  15. Reeve, J.N., Mendelson, N.H., and Cole, R.M. (1972) Cell morphology of Bacillus subilis: the effect of genetic background on the expression of a Rod gene. Mol. Gen. Genet. 119,11–26.PubMedCrossRefGoogle Scholar
  16. Rogers, H.J., McConnell, M., and Burdett, I.D.J. (1970) The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. J. Gen. Microbiol. 61, 155–171.PubMedCrossRefGoogle Scholar
  17. Rogers, H.J., Thurman, P.F., Taylor, C, and Reeve, J.N. (1974) Mucopeptide synthesis by rod mutants of Bacillus subtilis. J. Gen. Microbiol. 85, 335–350.PubMedCrossRefGoogle Scholar
  18. Rogers, H.J., and Taylor, C. (1978) Autolysins and shape change in rodA mutants of Bacillus subtilis. J. Bacteriol. 135, 1032–1042.PubMedGoogle Scholar
  19. Satta, G., Schito, G.C, and Meloni, G.A. (1969) Transizione bastoncinosfera in un ceppo di Klebsiella pneumoniae. Ultrastruttura delle forme coccoidie tipiche ed anormi. Atti del XV° Congresso Nazionale di Microbiologia Torina-Saint Vincent 2, 247–253.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Harold M. Pooley
    • 1
  • François-Xavier Abellan
    • 1
  • Dimitri Karamata
    • 1
  1. 1.Institut de génétique et de biologie microbiennesLausanneSwitzerland

Personalised recommendations