Skip to main content

Genetic Control of Fungal Cell Wall Autolysis

  • Chapter
Bacterial Growth and Lysis

Abstract

The major structural components of fungal cell walls are usually polysaccharide homopolymers, such as glucans and chitin, with chemical structures simpler than those of bacterial peptidoglycan. However, fungal cell walls are also thick and complex envelopes playing the same role as bacterial cell walls. For a number of years we have been addressing the question of the biological role of fungal autolysins, enzymes that can be recognized biochemically as being capable of degrading components of the producer’s cell wall. The autolytic action of these enzymes on fungal walls has always been envisaged as the controlled hydrolytic modification of the wall polymers in many situations that might require some kind of modification of the wall structure. Therefore fungal autolysins have been proposed as agents that may be critical for fungal morphogenesis, and they must represent basic elements contributing to the dynamics of the wall structure, that involves a series of changes throughout the yeast mitotic cell cycle and apical extension of hyphae, as well as in other processes such as sexual conjugation, meiosis, dimorphism, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartnicki-García, S. 1973. Fundamental aspects of hyphal morphogenesis. Symposia of the Society for General Microbiology 23:245.

    Google Scholar 

  • Borgia, P.B. and Dodge, C.L. 1992. Characterization of Aspergillus nidulans mutants deficient in cell wall chitin or glucan. J. Bacteriol. 174:311.

    Google Scholar 

  • Cabib, E. and Duran, A. 1975. Simple and sensitive procedure for screening yeast mutants that lyse at non-permissive temperatures. J. Bacteriol. 124:1604.

    PubMed  CAS  Google Scholar 

  • Cabib, E., Silverman, S.J. and Shaw, J.A. 1992. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J. Gen. Microbiol 138:97.

    Article  PubMed  CAS  Google Scholar 

  • Costigan, C, Gehrung, S. and Snyder, M. 1992. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol. Cell. Biol. 12:1162.

    PubMed  CAS  Google Scholar 

  • de la Fuente, J., Alvarez, A., Nombela, C. and Sanchez, M. 1992. Flow cytometric analysis of Saccharomyces cerevisiae autolytic mutants and protoplasts. Yeast 8:39.

    Article  PubMed  Google Scholar 

  • del Rey, F., García-Acha, I. and Nombela, C. 1979. The regulation of β-glucanase synthesis in fungi and yeast. J. Gen. Microbiol. 110:83.

    Article  Google Scholar 

  • del Rey, F., Santos, T., García-Acha, I. and Nombela, C. 1980. Synthesis of β-glucanases during sporulation in Saccharomyces cerevisiae: formation of a new sporulationspecific 1,3-β-glucanase. J. Bacteriol. 146:621.

    Google Scholar 

  • Fleet, G.H. 1984. The occurence and function of endogenous wall degrading enzymes in yeasts, in: “Microbial cell wall synthesis and autolysis”, C. Nombela (ed.). Elsevier Science Publishers.

    Google Scholar 

  • Irie, K., Araki, H. and Oshima, Y. 1991. Mutations in a Saccharomyces cerevisiae host showing increased holding stability of the heterologous plasmid pSRl. Mol. Gen. Genet. 225:257.

    Article  PubMed  CAS  Google Scholar 

  • Klebl, F. and Tanner, W. 1989. Molecular cloning of a cell wall exo-1,3-β-glucanase from Saccharomyces cerevisiae. J. Bacteriol. 171:6259.

    PubMed  CAS  Google Scholar 

  • Kuranda, M.J. and Robbins, P.W. 1991. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266:19758.

    PubMed  CAS  Google Scholar 

  • Lee, K.S. and Levin, D.E. 1992. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 12:172.

    PubMed  CAS  Google Scholar 

  • Levin, D.E. and Bishop, J.M. 1990. A putative protein kinase (Kinl +) is important for growth polarity in Schizosaccharomyces pombe. Proc. Nat. Acad. Sci. 87:8272.

    Article  PubMed  CAS  Google Scholar 

  • Nebreda, M., Villa, T.G., Villanueva, J.R. and del Rey, F. 1986. Cloning of genes related to exo-β-production in Saccharomyces cerevisiae: characterization of an exo-β-glucanase structural gene. Gene 47:245.

    Article  PubMed  CAS  Google Scholar 

  • Nombela, C. and Santamaria, C. 1984. Genetics of yeast cell wall autolysis, in: “Microbial cell wall synthesis and autolysis”, C. Nombela (ed.). Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Nombela, C, Molina, M., Cenamor, R. and Sánchez, M. 1988. Yeast β-glucanases: a complex system of secreted enzymes. Microbiol. Sci. 5:328.

    PubMed  CAS  Google Scholar 

  • Nombela, C, Pia, J., Herreros, E., Gil, C, Molina, M. and Sanchez, M. 1992. Novel targets for antifungal drugs, in “New strategies in fungal disease,” J.E. Bennet, R.J. Hay and P.K. Peterson, eds., Churchill Livinstone, London.

    Google Scholar 

  • Payton, M. and de Tiani, M. 1990. The isolation of osmotic-remedial conditional lethal mutants of Candida albicans. Curr. Genet. 17:293.

    Article  PubMed  CAS  Google Scholar 

  • Ribas, J.C., Diaz, M., Duran, A. and Pérez, P. 1991. Isolation and characterization of Schizosaccharomyces pombe mutants defective in cell wall (l-3)β-D-Glucan. J. Bacteriol. 173:3456.

    PubMed  CAS  Google Scholar 

  • Stateva, L.I., Oliver, S.G., Trueman, L.J. and Venkov. P.V. 1991. Cloning and characterization of a gene which determines osmotic stability in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:4235.

    PubMed  CAS  Google Scholar 

  • Sullivan, P.A., Emerson, M.J., Broughton, M.J. and Stubs, H.J. 1991. Transglucosylation catalysed by the exo-β-glucanase of Candida albicans, in: “Proc. FEMS Symposium on Candida and Candidamycosis, E. Tumbay, H.P.R. Seeliger and O. Ang eds., Plenum Press, New York.

    Google Scholar 

  • Torres, L., Martin, H., García-Sáez, M.I., Arroyo, J., Molina, M., Sanchez, M. and Nombela, C. 1991. A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae Iyt2 mutants. Mol Microbiol. 5:2845.

    Article  PubMed  CAS  Google Scholar 

  • Venkov, P.V., Hadjiolov, A.A., Battaner, E. and Schlessinger, D. 1974. Saccharomyces cerevisiae sorbitol dependent fragile mutants. Biochem. Biophys. Res. Commun. 56:559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nombela, C., Molero, G., Martín, H., Cenamor, R., Molina, M., Sánchez, M. (1993). Genetic Control of Fungal Cell Wall Autolysis. In: de Pedro, M.A., Höltje, JV., Löffelhardt, W. (eds) Bacterial Growth and Lysis. Federation of European Microbiological Societies Symposium Series, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9359-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9359-8_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9361-1

  • Online ISBN: 978-1-4757-9359-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics