Advertisement

Genetic Control of Fungal Cell Wall Autolysis

  • César Nombela
  • Gloria Molero
  • Humberto Martín
  • Rosa Cenamor
  • María Molina
  • Miguel Sánchez
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

The major structural components of fungal cell walls are usually polysaccharide homopolymers, such as glucans and chitin, with chemical structures simpler than those of bacterial peptidoglycan. However, fungal cell walls are also thick and complex envelopes playing the same role as bacterial cell walls. For a number of years we have been addressing the question of the biological role of fungal autolysins, enzymes that can be recognized biochemically as being capable of degrading components of the producer’s cell wall. The autolytic action of these enzymes on fungal walls has always been envisaged as the controlled hydrolytic modification of the wall polymers in many situations that might require some kind of modification of the wall structure. Therefore fungal autolysins have been proposed as agents that may be critical for fungal morphogenesis, and they must represent basic elements contributing to the dynamics of the wall structure, that involves a series of changes throughout the yeast mitotic cell cycle and apical extension of hyphae, as well as in other processes such as sexual conjugation, meiosis, dimorphism, etc.

Keywords

Cell Wall Fungal Cell Wall Mitotic Cycle Cell Wall Composition Protein Kinase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartnicki-García, S. 1973. Fundamental aspects of hyphal morphogenesis. Symposia of the Society for General Microbiology 23:245.Google Scholar
  2. Borgia, P.B. and Dodge, C.L. 1992. Characterization of Aspergillus nidulans mutants deficient in cell wall chitin or glucan. J. Bacteriol. 174:311.Google Scholar
  3. Cabib, E. and Duran, A. 1975. Simple and sensitive procedure for screening yeast mutants that lyse at non-permissive temperatures. J. Bacteriol. 124:1604.PubMedGoogle Scholar
  4. Cabib, E., Silverman, S.J. and Shaw, J.A. 1992. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J. Gen. Microbiol 138:97.PubMedCrossRefGoogle Scholar
  5. Costigan, C, Gehrung, S. and Snyder, M. 1992. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol. Cell. Biol. 12:1162.PubMedGoogle Scholar
  6. de la Fuente, J., Alvarez, A., Nombela, C. and Sanchez, M. 1992. Flow cytometric analysis of Saccharomyces cerevisiae autolytic mutants and protoplasts. Yeast 8:39.PubMedCrossRefGoogle Scholar
  7. del Rey, F., García-Acha, I. and Nombela, C. 1979. The regulation of β-glucanase synthesis in fungi and yeast. J. Gen. Microbiol. 110:83.CrossRefGoogle Scholar
  8. del Rey, F., Santos, T., García-Acha, I. and Nombela, C. 1980. Synthesis of β-glucanases during sporulation in Saccharomyces cerevisiae: formation of a new sporulationspecific 1,3-β-glucanase. J. Bacteriol. 146:621.Google Scholar
  9. Fleet, G.H. 1984. The occurence and function of endogenous wall degrading enzymes in yeasts, in: “Microbial cell wall synthesis and autolysis”, C. Nombela (ed.). Elsevier Science Publishers.Google Scholar
  10. Irie, K., Araki, H. and Oshima, Y. 1991. Mutations in a Saccharomyces cerevisiae host showing increased holding stability of the heterologous plasmid pSRl. Mol. Gen. Genet. 225:257.PubMedCrossRefGoogle Scholar
  11. Klebl, F. and Tanner, W. 1989. Molecular cloning of a cell wall exo-1,3-β-glucanase from Saccharomyces cerevisiae. J. Bacteriol. 171:6259.PubMedGoogle Scholar
  12. Kuranda, M.J. and Robbins, P.W. 1991. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266:19758.PubMedGoogle Scholar
  13. Lee, K.S. and Levin, D.E. 1992. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 12:172.PubMedGoogle Scholar
  14. Levin, D.E. and Bishop, J.M. 1990. A putative protein kinase (Kinl +) is important for growth polarity in Schizosaccharomyces pombe. Proc. Nat. Acad. Sci. 87:8272.PubMedCrossRefGoogle Scholar
  15. Nebreda, M., Villa, T.G., Villanueva, J.R. and del Rey, F. 1986. Cloning of genes related to exo-β-production in Saccharomyces cerevisiae: characterization of an exo-β-glucanase structural gene. Gene 47:245.PubMedCrossRefGoogle Scholar
  16. Nombela, C. and Santamaria, C. 1984. Genetics of yeast cell wall autolysis, in: “Microbial cell wall synthesis and autolysis”, C. Nombela (ed.). Elsevier Science Publishers, Amsterdam.Google Scholar
  17. Nombela, C, Molina, M., Cenamor, R. and Sánchez, M. 1988. Yeast β-glucanases: a complex system of secreted enzymes. Microbiol. Sci. 5:328.PubMedGoogle Scholar
  18. Nombela, C, Pia, J., Herreros, E., Gil, C, Molina, M. and Sanchez, M. 1992. Novel targets for antifungal drugs, in “New strategies in fungal disease,” J.E. Bennet, R.J. Hay and P.K. Peterson, eds., Churchill Livinstone, London.Google Scholar
  19. Payton, M. and de Tiani, M. 1990. The isolation of osmotic-remedial conditional lethal mutants of Candida albicans. Curr. Genet. 17:293.PubMedCrossRefGoogle Scholar
  20. Ribas, J.C., Diaz, M., Duran, A. and Pérez, P. 1991. Isolation and characterization of Schizosaccharomyces pombe mutants defective in cell wall (l-3)β-D-Glucan. J. Bacteriol. 173:3456.PubMedGoogle Scholar
  21. Stateva, L.I., Oliver, S.G., Trueman, L.J. and Venkov. P.V. 1991. Cloning and characterization of a gene which determines osmotic stability in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:4235.PubMedGoogle Scholar
  22. Sullivan, P.A., Emerson, M.J., Broughton, M.J. and Stubs, H.J. 1991. Transglucosylation catalysed by the exo-β-glucanase of Candida albicans, in: “Proc. FEMS Symposium on Candida and Candidamycosis, E. Tumbay, H.P.R. Seeliger and O. Ang eds., Plenum Press, New York.Google Scholar
  23. Torres, L., Martin, H., García-Sáez, M.I., Arroyo, J., Molina, M., Sanchez, M. and Nombela, C. 1991. A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae Iyt2 mutants. Mol Microbiol. 5:2845.PubMedCrossRefGoogle Scholar
  24. Venkov, P.V., Hadjiolov, A.A., Battaner, E. and Schlessinger, D. 1974. Saccharomyces cerevisiae sorbitol dependent fragile mutants. Biochem. Biophys. Res. Commun. 56:559.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • César Nombela
    • 1
  • Gloria Molero
    • 1
  • Humberto Martín
    • 1
  • Rosa Cenamor
    • 1
  • María Molina
    • 1
  • Miguel Sánchez
    • 1
  1. 1.Departamento de Microbiología II Facultad de FarmaciaUniversidad ComplutenseMadridSpain

Personalised recommendations