Advertisement

Searching for the Evolutionary Design of the Pneumococcal Cell Wall Lytic Enzymes

  • Rubens López
  • José L. García
  • Eduardo Díaz
  • Jesús M. Sanz
  • José M. Sánchez-Puelles
  • Pedro García
  • Ernesto García
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

Peptidoglycan hydrolases represent one of the enzyme families most widely distributed in nature, since members of this family have been described from bacteriophages to man. Lysozymes, one of the best known group of enzymes at biochemical, structural and evolutionary levels, are included in this family (Jollès and Jollès, 1984). Moreover, bacterial autolysins, enzymes which have been postulated to participate in important physiological functions, are also peptidoglycan hydrolases (Rogers et al., 1980). Probably, the amidase LYTA from Streptococcus pneumoniae is the best characterized autolysin described so far (Höltje and Tomasz, 1976; Tomasz, 1984). The gene lytA encoding this enzyme has been cloned and sequenced (García et al., 1986), allowing us to obtain valuable information about its implication in the process of daugther cell separation (Ronda et al., 1987). The cloning of lytA has also facilitated the isolation of the genes encoding the cell wall lytic enzymes from pneumococcal bacteriophages based on their sequence homologies (García et al. 1987; García et al., 1988; García et al., 1990; Romero et al., 1990 a). The comparison of the sequences of the host and phage genes revealed that pneumococcal cell wall lytic enzymes could be the result of the fusion of two independent functional domains, one containing the active center (N-terminal domain) and the other responsible of the recognition of the teichoic acids of the cell wall (C-terminal domain) (García et al, 1988; García et al., 1990; Romero et al., 1990a;). This hypothesis was based on the observation that the host LYTA and phage HBL amidases, and the phage CPL1 and CPL9 lysozymes, which depend on the presence of choline in the teichoic acids for activity, have homologous C-terminal domains.

Keywords

Streptococcus Pneumoniae Chimeric Protein Lytic Enzyme Phage Genome Teichoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, A. (1988) Phage evolution and speciation. in The bacteriophages (Calendar, R., Ed.), pp. 1–14. Plenum Publishing Corp., New York.CrossRefGoogle Scholar
  2. Díaz, E., Lopez, R. and García, J.L. (1990) Chimeric phage-bacterial enzymes, a clue in the molecular evolution of genes. Proc. Nad. Acad. Sci. USA 87, 8125–8129.CrossRefGoogle Scholar
  3. Díaz, E., López, R. and García, J.L. (1991) Chimeric pneumococcal cell wall lytic enzymes reveal important physiologycal and evolutionary traits. J. Biol. Chem. 266, 5464–5471.PubMedGoogle Scholar
  4. García, E., García, J.L., García, P., Arrarás, A., Sánchez-Puelles, J. M. and Lopez, R. (1988) Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc. Natl. Acad. Sci. USA. 85, 914–918.PubMedCrossRefGoogle Scholar
  5. García, J.L., García, E., Arraräs A., García, P., Ronda, C. and R. Lopez. (1987) cloning, purification and biochemical characterization of the pneumococcal bacteriophage Cp-I lysin. J. Virol. 61, 2573–2580.PubMedGoogle Scholar
  6. García, P., García, J.L., García, E. and Lopez, R. (1986) Nucleotide sequence and expression of the pneumococcal autolysin gene from its own promoter in Escherichia coli. Gene 43, 265–272.PubMedCrossRefGoogle Scholar
  7. García, P., García, J.L., García, E., Sanchez-Puelles, J.M. and Lopez, R. (1990) Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene 86, 81–88.PubMedCrossRefGoogle Scholar
  8. Höltje, J.V. and Tomasz, A. (1976) Purification of the pneumococcal N-acetylmuramyl-L-alanine amidase to biochemical homogeneity. J. Biol. Chem. 251, 4199–4207.PubMedGoogle Scholar
  9. Hunkapiller, T. H., Huang, H., Hoong, L. and Campbell, J. H. (1982) The impact of modern genetics on evolutionary theory. In: R. Millman (ed.) Sinauer, Sunderland, MA.Google Scholar
  10. Jolies, P. and Jolies, J. (1984) What’s new in lysozyme research?. Mol. Cell. Biochem. 63, 165–189.Google Scholar
  11. Rogers, H.J., Perkins, H.R. and Ward, J.B. (1980) Microbial cell walls and membranes. Chapman and Hall, London.CrossRefGoogle Scholar
  12. Romero, A., Lopez, R. and García, P. (1990 o) Characterization of the pneumococcal bacteriophage HB-3 amidase: Cloning and expression in Escherichia coli. J. Virol. 64, 137–142.PubMedGoogle Scholar
  13. Romero, A., Lopez, R. and Garda, P. (1990 b) Sequence of the Streptococcus pneumoniae bacteriophage reveals high homology with the mayor host autolysin. J. Bacteriol. 172,5064–5070.PubMedGoogle Scholar
  14. Ronda, C, García, J.L., García, E., Sanchez-Puelles, J.M. and Lopez, R. (1987) Biological role of the pneumococcal amidase. Cloning of the lytA gene in Streptococcus pneumoniae. Eur. J. Biochem. 164, 621–624.PubMedCrossRefGoogle Scholar
  15. Sánchez-Puelles, J. M., Sanz, J, García, J.L. and García, E. (1990) Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases. Gene 89, 69–75.PubMedCrossRefGoogle Scholar
  16. Sánchez-Puelles, J. M., Ronda, C, García, J. L., García, P., Lopez, R. and García, E. (1986) Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. Eur. J. Biochem. 158, 289–293.PubMedCrossRefGoogle Scholar
  17. Sánchez-Puelles, J. M., Sanz, J., García, J.L. and García, E. (1992) Immibilization and singlestep purification of fusion proteins using DEAE-cellulose. Eur. J. Biochem. 203, 153–159.PubMedCrossRefGoogle Scholar
  18. Sanz, J. M., Diaz, E. and García, J.L. (1992) Studies on the structure and function of the Nterminal domain of the pneumococcal murein hydrolases. Mol. Microbiol. 6 (in pressGoogle Scholar
  19. Stroynowsky, I. T. (1981) Distribution of bacteriophage 3T homologous deoxyribonucleic acid sequences in Bacillus subtilis 168, related bacteriophages, and other Bacillus species. J. Bacteriol. 148, 91–100.Google Scholar
  20. Tomasz, A. (1981) Surface components of Streptococcus pneumoniae. Rev. Infect. Dis. 3:190–211.PubMedCrossRefGoogle Scholar
  21. Tomasz, A. (1984) Building and breaking of bonds in the cell wall of bacteria-the role of autolysins, p, 3–12. In C. Nombela (ed.), Microbial cell wall synthesis and autolysis. Elsevier Science Publishers, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Rubens López
    • 1
  • José L. García
    • 1
  • Eduardo Díaz
    • 1
  • Jesús M. Sanz
    • 1
  • José M. Sánchez-Puelles
    • 1
  • Pedro García
    • 1
  • Ernesto García
    • 1
  1. 1.Unidad de Genética Bacteriana Centro de Investigaciones BiológicasConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations