Specific Binding of the Soluble Lytic Transglycosylase to the Murein Sacculus of Escherichia coli

  • Tina Romeis
  • Joachim-Volker Höltje
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)


Murein hydrolases, which are ubiquitous among bacteria (Ghuysen, 1968), represent a class of potentially autolytic enzymes and hence must be controlled strictly. However, little is known about the cellular control mechanism (Höltje and Tuomanen, 1991). This is in contrast to the detailed knowledge of the biochemistry of the murein synthesizing enzymes and their specific inhibition by a wide range of antibiotics. Due to this lack of information we are still far from understanding how the typical bacteriolytic response to inhibitors of murein synthesis is triggered (Tomasz, 1979).


Beta Lactam Antibiotic Beta Lactam Muramic Acid Bacteriolytic Enzyme Autolytic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beachey, E.H., Keck, W., de Pedro, M.A. and Schwarz, U. (1981) Exoenzymatic activity of transglycosylase isolated from Escherichia coli. Eur. J. Biochem. 116, 355–358.PubMedCrossRefGoogle Scholar
  2. Betzner, A. and Keck, W. (1989) Molecular cloning, overexpression and mapping of the sit gene encoding the soluble lytic transglycosylase of Escherichia coli. Mol. Gen. Genet. 219, 489–491.PubMedCrossRefGoogle Scholar
  3. Betzner, A.S., Ferreira, L.C.S., Höltje, J.-V. and Keck, W. (1990) Control of the soluble lytic transglycosylase by the stringent response in Escherichia coli. FEMS Microbiol Lett. 67, 161–164.CrossRefGoogle Scholar
  4. Engel, H., Kazemier, B. and Keck, W. (1991) Murein-metabolizing enzymes from Escherichia coli: sequence analysis and controlled overexpression of the sit gene which encodes the soluble lytic transglycosylase. J. Bacteriol. 173, 6773–6782.PubMedGoogle Scholar
  5. Fortin, Y., Phoenix, P. and Drapeau, G.R. (1990) Mutations conferring resistance to azide in Escherichia coli occur primarily in the sec A gene. J. Bacteriol. 172,6670–6610.Google Scholar
  6. Ghuysen, J.-M. (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev. 32, 425–464.PubMedGoogle Scholar
  7. Höltje, J.-V. and Tuomanen, E. J. (1991) The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137, 441–454.PubMedCrossRefGoogle Scholar
  8. Höltje, J.-V., Mirelman, D., Sharon, N. and Schwarz, U. (1975) Novel type of murein transglycosylase in Escherichia coli. J. Bacteriol. 124, 1067–1076.PubMedGoogle Scholar
  9. Ito, K., Wittekind, M., Nomura, M., Shiba, K., Yura, T., Muira, A. and Nashimoto, H. (1983) A temperature-sensitive mutant of E. coli exhibiting slow processing of exported proteins. Cell 32, 789–797.PubMedCrossRefGoogle Scholar
  10. Kumamoto, C.A. and Beckwith, J. (1983) Mutations in a new gene, sec B, cause defective protein localization in Escherichia coli. J. Bacteriol. 154, 253–260.PubMedGoogle Scholar
  11. Linnett, O.E. and Beechey, O.D. (1979) Inhibitors of the ATP synthetase system. Methods Enzymol. 55, 474–518.Google Scholar
  12. Oliver, D. and Beckwith, J. (1981) E. coli mutant pleiotropically defective in the export of secreted proteins. Cell 25, 765–772.PubMedCrossRefGoogle Scholar
  13. Sancar, A., Hack, A.M. and Rupp, W.D. (1979) Simple method for identification of plasmid-coded proteins. J. Bacteriol. 137, 692–693.PubMedGoogle Scholar
  14. Tabor, S. and Richardson, C.C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82, 1074–1078.PubMedCrossRefGoogle Scholar
  15. Tomasz, A. (1979) The mechanism of the irreversible antimicrobial effect of penicillins: how the beta lactam antibiotics kill and lyse bacteria. Annual Rev. Microbiol. 33, 113–137.CrossRefGoogle Scholar
  16. Walderich, B. and Höltje, J.-V. (1991) Subcellular distribution of the soluble lytic transglycosylase. J. Bacteriol. 173, 5668–5676.PubMedGoogle Scholar
  17. Wickner, W., Messen, A.J.M. and Haiti, F.-U. (1991) The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu. Rev. Biochem. 60, 101–124.PubMedCrossRefGoogle Scholar
  18. Witholt, B., Boekhout, M. Brock, M. Kingma, J. van Heerikhuizen, H. and de Leij, L. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal. Biochem. 74, 160–170.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Tina Romeis
    • 1
  • Joachim-Volker Höltje
    • 1
  1. 1.Abteilung BiochemieMax-Planck-Institut für EntwicklungsbiologieTübingenGermany

Personalised recommendations