Advertisement

Does PBP2 Regulate Cell Division in E. coli?

  • Philippe Bouloc
  • Daniel Vinella
  • Danièle Joseleau-Petit
  • Richard D’Ari
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

Although penicillin has not made war humane, it probably saved over a million lives during World War II. The action of penicillin and related β-lactam antibiotics was early recognized to be extrmely broad, affecting the vast majority of bacterial species, and at the same time highly specific, generally producing little effect on eukaryotic cells. As the complex structure of the bacterial cell wall became known, the mechanism of action of β-lactams was also revealed: they bind covalently to the PBPs (‘penicillin binding proteins’), a set of integral membrane proteins which catalyse the terminal steps in the synthesis of the rigid peptoglycan wall (for review see Waxman and Strominger, 1983; Ghuysen, 1991).

Keywords

Wild Type Strain Glycan Chain Muramic Acid Peptidoglycan Synthesis Transpeptidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aono, R., Yamasaki, M. and Tamura, G. (1978) Changes in composition of envelope proteins in adenylate cyclase-or cyclic AMP receptor protein-deficient mutants of Escherichia coli. J. Bacteriol. 136, 812–814.PubMedGoogle Scholar
  2. Begg, K.J., Takasuga, A., Edwards, D.H., Edwards, J., Edwards, D.S., Spratt, B.G., Adachi, H., Ohta, T., Matsuzawa, H. and Donachie, W.D. (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172, 6697–6708.PubMedGoogle Scholar
  3. Botta, G.A. and Park, J.T. (1981) Evidence of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J. Bacteriol. 145, 333–340.PubMedGoogle Scholar
  4. Bouloc, P., Jaffé, A. and D’Ari, R. (1988) Preliminary physiologie characterization and genetic analysis of a new Escherichia coli mutant, lov, resistant to mecillinam. Rev. Infect. Dis. 10, 905–910.PubMedCrossRefGoogle Scholar
  5. Bouloc, P., Jaffé, A. and D’Ari, R. (1989) The Escherichia coli lov gene product connects peptidoglycan synthesis, ribosomes and growth rate. EMBO J. 8, 317–323.PubMedGoogle Scholar
  6. Broome-Smith, J.K. (1985) Construction of a mutant of Escherichia coli that has deletions of both the penicillin-binding protein 5 and 6 genes. J. Gen. Microbiol. 331, 2115–2118.Google Scholar
  7. Broome-Smith, J.K. and Spratt, B.G. (1982) Deletion of the penicillin-binding protein 6 gene of Escherichia coli. J. Bacteriol. 152, 904–906.PubMedGoogle Scholar
  8. Buchanan, C.E. and Sowell, M.O. (1982) Synthesis of penicillin-binding protein 6 by stationary-phase of Escherichia coli. J. Bacteriol. 151, 491–494.PubMedGoogle Scholar
  9. D’Ari, R., Jaffé, A., Bouloc, P. and Robin, A. (1988) Cyclic AMP and cell division in Escherichia coli. J. Bacteriol. 170, 65–70.PubMedGoogle Scholar
  10. del Portillo, F.G. and de Pedro, M.A. (1991) Penicillin-Binding Protein 2 is essential for the integrity of growing cells of Escherichia coli pon Bstrains. J. Bacteriol. 173, 4530–4532.Google Scholar
  11. Dombou, M., Bhide, S.V. and Mizushima, S. (1981) Appearance of elongation factor Tu in the outer membrane of sucrose-dependent spectinomycin-resistant mutants of Escherichia coli. Eur. J. Biochem. 113, 397–403.PubMedCrossRefGoogle Scholar
  12. Donachie, W.D. and Begg, K.J. (1989) Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J. Bacteriol. 171, 4633–4639.PubMedGoogle Scholar
  13. Georgopoulos, C.P. and Eisen, H. (1974) Bacterial mutants which block phage assembly. J. Supramolec. Struct. 2, 349–359.CrossRefGoogle Scholar
  14. Ghuysen, J.-M. (1991) Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45, 37–67.PubMedCrossRefGoogle Scholar
  15. Glauner, B., Höltje, J.-V. and Schwarz, U. (1988) The composition of the murein of Escherichia coli. J. Biol. Chem. 263, 10088–10095.PubMedGoogle Scholar
  16. Höltje, J.-V. and Tuomanen, E.I. (1991) The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137, 441–454.PubMedCrossRefGoogle Scholar
  17. Ishino, F. and Matsuhashi, M. (1981) Peptidoglycan synthetic enzyme activities of highly purified penicillinbinding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochem. Biophys. Res. Comm. 101, 905–911.PubMedCrossRefGoogle Scholar
  18. Ishino, F., Mitsui, K., Tanaki, S. and Matsuhashi, M. (1980) Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem. Biophys. Res. Comm. 97, 287–293.PubMedCrossRefGoogle Scholar
  19. Ishino, F., Park, W., Tomioka, S., Tamaki, S., Takase, I., Kunugita, K., Matsuzawa, H., Asoh, S., Ohta, T., Spratt, B.G. and Matsuhashi, M. (1986) Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and RodA protein. J. Biol. Chem. 261,7024–7031.PubMedGoogle Scholar
  20. Izaki, K., Matsuhashi, M. and Strominger, J.L. (1968) Biosynthesis of the bacterial cell walls. XIII. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. Biol. Chem. 243, 3180–3192.Google Scholar
  21. Jaffé, A., Chabbert, Y.A. and Derlot, E. (1983) Selection and characterization of β-lactam-resistant Escherichia coli K12 mutants. Antimicrob. Agents Chemother. 23, 622–625.PubMedCrossRefGoogle Scholar
  22. James, R., Haga, J.Y. and Pardee, A.B. (1975) Inhibition of an early event in the cell division cycle of Escherichia coli by FL 1060, an amidinopenicillanic acid. J. Bacteriol. 122, 1283–1292.PubMedGoogle Scholar
  23. Kato, J., Suzuki, H. and Hirota, Y. (1985) Dispensability of either penicillin binding protein-la or-lb involved in the essential process for cell elongation in Escherichia coli. Mol. Gen. Genet. 200, 272–277.PubMedCrossRefGoogle Scholar
  24. Korat, B., Mottl, H. and Kech, W. (1991) Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol. Microbiol. 5, 675–684.PubMedCrossRefGoogle Scholar
  25. Lleo, M.M., Canepari, P. and Satta, G. (1990) Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rodshaped mutants from some wild-type cocci. J. Bacteriol. 172, 3758–3771.PubMedGoogle Scholar
  26. Lund, F. and Tybring, L. (1972) 6β-amidinopenicillanic acid — a new group of antibiotics. Nature New Biol. 236, 135–137.PubMedGoogle Scholar
  27. Markiewicz, Z., Broome-Smith, J.K., Schwarz, U. and Spratt, B.G. (1982) Spherical E. coli due to elevated levels of D-alanine carboxypeptidase. Nature 297, 702–704.PubMedCrossRefGoogle Scholar
  28. Matsuhashi, M., Takagaki, Y., Maruyama, I.N., Tanaki, S., Nishimura, Y., Suzuki, H., Ogino, U. and Hirota, Y. (1977) Mutants of Echerichia coli lacking in highly penicillin-sensitive D-alanine carboxypeptidase activity. Proc. Natl. Acad. Sci. USA. 74, 2976–2979.PubMedCrossRefGoogle Scholar
  29. Matsuhashi, M., Tamaki, S., Curtis, T.S. and Strominger, J.L. (1979) Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with major D-alanine carboxypeptidase IA activity. J. Bacteriol. 137, 644–647.PubMedGoogle Scholar
  30. Mizuno, T., Yamada, H., Yamagata, H. and Mizushima, S. (1976) Coordinated alteration in ribosomes and cytoplasmic membrane in sucrose-dependent, spectinomycin-resistant mutants of Escherichia coli. J. Bacteriol. 125, 524–530.PubMedGoogle Scholar
  31. Ogura, T., Bouloc, P., Niki, H., D’Ari, R., Hiraga, S. and Jaffé, A. (1989) Penicillin-Binding Protein 2 is essential in wild-type Escherichia coli but not in lov or cya mutants. J. Bacteriol. 171, 3025–3030.PubMedGoogle Scholar
  32. Oliver, D. and Beckwith, J. (1982) Identification of a new gene (secA) and gene product involved in the secretion of the envelope proteins. J. Bacteriol. 150, 686–691.PubMedGoogle Scholar
  33. Paek, K.-H. and Walker, G.C. (1987) Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169, 283–290.PubMedGoogle Scholar
  34. Park, J.T. and Burman, L. (1973) FL1060 — A new penicillin with a unique mode of action. Biochem. Biophys. Res. Comm. 51, 863–868.PubMedCrossRefGoogle Scholar
  35. Pisabarro, A.G., Prats, R., Vazquez, D. and Rodriguez-Tébar, A. (1986) Activity of penicillin-binding protein 3 from Escherichia coli. J. Bacteriol. 168, 199–206.PubMedGoogle Scholar
  36. Powell, J.K. and Young, K.D. (1991) Lysis of Escherichia coli by beta-Lactams which bind penicillinbinding proteins la and lb — Inhibition by Heat Shock Proteins. J. Bacteriol 173, 4021–4026.PubMedGoogle Scholar
  37. Schmidt, L., Botta, G. and Park, J.T. (1981) Effects of furazlocillin, a β-lactam antibiotic which binds selectively to penicillin-binding protein 3, on Escherichia coli mutant deficient in other penicillinbinding proteins. J. Bacteriol. 145, 632–637.PubMedGoogle Scholar
  38. Spotts, C.R. and Stanier, R.Y. (1961) Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature 192, 633–637.PubMedCrossRefGoogle Scholar
  39. Spratt, B.G. (1976) Identification of the major penicillin binding proteins of Escherichia coli as D-alanine carboxypeptidase I A. J. Bacteriol. 127, 660–663.PubMedGoogle Scholar
  40. Spratt, B.G. (1978) Escherichia coli resistance to β-lactam antibiotics throught a decrease in the affinity of a target for lethality. Nature 274, 713–715.PubMedCrossRefGoogle Scholar
  41. Spratt, B.G. (1980) Deletion of the penicillin-binding protein 5 gene of Escherichia coli. J. Bacteriol. 144, 1190–1192.PubMedGoogle Scholar
  42. Spratt, B.G. and Pardee, A.B. (1975) Penicillin-binding protein and cell shape in E. coli. Nature 254, 515–517.CrossRefGoogle Scholar
  43. Suzuki, H., Nishimura, Y. and Hirota, Y. (1978) On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 75, 664–668.PubMedCrossRefGoogle Scholar
  44. Tamaki, S., Nakajima, S. and Matsuhashi, M. (1977) Thermosensitive mutation in Escherichia coli simultaneously causing defects in penicillin-binding protein-IBs and in enzyme activity for peptidoglycan synthesis in vitro. Proc. Natl. Acad. Sci. USA. 74, 5472–5476.PubMedCrossRefGoogle Scholar
  45. Tybring, L. and Mechior, N.H. (1975) Mecillinam (FL 1060), a 6β-amidinopencillanic acid derivative: bacterial action and synergy in vitro. Antimicrobiol. Agents Chemother. 8, 271–276.CrossRefGoogle Scholar
  46. Vinella, D., D’Ari, R. and Bouloc, P. (1992) Penicillin-binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced. EMBO 11, in press.Google Scholar
  47. Wachi, M., Doi, M., Tamaki, S., Park, W., Nakajima-Iijima, S. and Matsuhashi, M. (1987) Mutant isolation and molecular cloning oimre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169,4935–4940.PubMedGoogle Scholar
  48. Waxman, D.J. and Strominger, J.L. (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu. Rev. Biochem. 52, 825–869.PubMedCrossRefGoogle Scholar
  49. Xiao, H., Kaiman, M., Ikehara, K., Zemel, S., Glaser, G. and Cashel, M. (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980–5990.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Philippe Bouloc
    • 1
  • Daniel Vinella
    • 1
  • Danièle Joseleau-Petit
    • 1
  • Richard D’Ari
    • 1
  1. 1.Institut Jacques MonodC.N.R.S., Université Paris 7Paris Cedex 05France

Personalised recommendations