Biosynthesis of Peptidoglycan in Gaffkya Homari: Regulation of Transpeptidation by Acceptor Peptide

  • Francis C. Neuhaus
  • Rabindra K. Sinha
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)

Abstract

Gaffkya homari (Aerococcus viridans) contains a system for the biosynthesis of peptidoglycan(PG) that utilizes penicillin-sensitive targets which are not N -(dAla) acceptor transpeptidases. In contrast to cross-linking enzymes from other bacteria, the transpeptidase from this gram-positive organism is essentially insensitive to inhibition by penicillin (Hammes, 1976). Thus, the target of penicillin in G. homari is different from that identified by Tipper and Strominger (1965) for Staphylococcus aureus and Escherichia coli. Because of this difference, an understanding of β-lactam action in this unique organism is of primary interest.

Keywords

Hydrolysis Amidated Penicillin Bacillus Streptomyces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardin, C, Sinha, R.K., Kalomiris, E. and Neuhaus, F.C. (1984) Biosynthesis of peptidoglycan in Gaffkya homari: processing of nascent glycan by reactivated membranes. J. Bacteriol. 157, 398–404.PubMedGoogle Scholar
  2. Ghuysen, J.-M., Leyh-Bouille, M., Campbell, J.N., Moreno, R., Frère, J.-M., Duez, C, Nieto, M. and Perkins, H.R. (1973) Structure of the wall peptidoglycan of Streptomyces R39 and the specificity profile of its exocellular DD-carboxypeptidase-transpeptidase for peptide acceptors. Biochemistry 12, 1243–1251.PubMedCrossRefGoogle Scholar
  3. Glauner, B. (1988) Separation and quantification of muropeptides with high-performance liquid chromatography. Anal. Biochem. 172, 451–464.PubMedCrossRefGoogle Scholar
  4. Ghuysen, J.-M. (1991) Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45, 37–67.PubMedCrossRefGoogle Scholar
  5. Hammes, W.P. (1976) Biosynthesis of peptidoglycan in Gqffkya homari: the mode of action of penicillin G and mecillinam. Eur. J. Biochem. 70, 107–113.PubMedCrossRefGoogle Scholar
  6. Nakel, M., Ghuysen, J.-M. and Kandler, O. (1971) Wall peptidoglycan in Aerococcus viridans strains 201 Evans and ATCC 11563 and Gafflkya homari strain ATCC 10400. Biochemistry 10, 2170–2175.PubMedCrossRefGoogle Scholar
  7. Pollack, J.P., Ntamere, A.S. and Neuhaus, F.C. (1992) D-Alanyl-lipoteichoic acid inLactobacillus casei: secretion of vesicles in response to benzylpenicillin J. Gen. Microbiol. in press.Google Scholar
  8. Sinha, R.K. and Neuhaus, F.C. (1991) Biosynthesis of peptidoglycan in Gafflcya homari: on the target(s) of benzylpenicillin. Antimicrob. Agents Chemother. 35, 1753–1759.PubMedCrossRefGoogle Scholar
  9. Tipper, D.J. and Strominger, J.L. (1965) Mechanism of action of penicillins: a proposal based on the their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. USA 54, 1133–1141.PubMedCrossRefGoogle Scholar
  10. Wilson, G.E., Jr., Jacob, G.S. and Schaefer, J. (1985) Solid-state 15N NMR studies of the effects of penicillin on cell-wall metabolism of Aerococcus viridans (Gaffkya homari). Biochem. Biophys. Res. Commun. 126, 1006–1012.PubMedCrossRefGoogle Scholar
  11. Wrezel, P.W., Ellis, L.F. and Neuhaus, F.C. (1986) In vivo target of benzylpenicillin in Gafflcya homari. Antimicrob. Agents Chemother. 29, 432–439.PubMedCrossRefGoogle Scholar
  12. Zhu, Y.F., Curran, I.H.A., Joris, B., Ghuysen, J.-M. and Lampen, J.O. (1990) Identification of BlaR, the signal transducer for β-lactamase production in Bacillus licheniformis, as a penicillin-binding protein with strong homology to the OXA-2, β-lactamase (class D) of Salmonella typhimurium.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Francis C. Neuhaus
    • 1
  • Rabindra K. Sinha
    • 1
  1. 1.Department of Biochemistry, Molecular Biology and Cell BiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations