Amino Acids as Useful Tools in the Study of Murein Metabolism in Escherichia coli

  • Marta Caparrós
  • José C. Quintela
  • José I. Leguina
  • Miguel A. de Pedro
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 65)


The murein sacculus can be envisaged as a bacterial exoskeleton fulfilling mechanical and morphogenetic functions. Metabolism of the murein sacculus is an essential process that compares in complexity with chromosome replication and protein synthesis in bacteria (Höltje and Schwarz, 1985; Höltje and Tuomanen, 1991).


Acceptor Substrate Stationary Phase Cell Diaminopimelic Acid Modify Dimer Peptide Side Chain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braun, V. (1975) Covalent lipoprotein from the outer membrane of Eschehchia coli. Biochim. Biophys. Acta 415, 335–377.PubMedCrossRefGoogle Scholar
  2. Caparrós, M., Arän, V., and de Pedro, M.A. (1992a) Incorporation of S-[3H]methyl-D-cysteine into the peptidoglycan of ether-treated cells of Eschehchia coli. FEMS Microbiol. Lett. 93, 139–146.CrossRefGoogle Scholar
  3. Caparrós, M.,. Torrecuadrada, J.L.M. and de Pedro, M.A. (1991) Effect of D-amino acids on Escherichia coli strains with impaired penicillin-binding proteins. Res Microbiol. 142, 345–350.PubMedCrossRefGoogle Scholar
  4. Caparrós, M., Pisabarro, A.G. and de Pedro, M.A. (1992a) Effect of D-amino acids in the structure and synthesis of peptidoglycan in Escherichia coli. J. Bacteriol. (In the press).Google Scholar
  5. Chaloupka, J., Strnadová, M., Cáslavská, J., and Veres, K. (1974) Growth and cell division of Escherichia coli 173-25 in the presence of some analogs of diaminopimelic acid. Zeitschrift für Allg. Mikrobiologie 14, 283–296.CrossRefGoogle Scholar
  6. de Pedro, M.A., and Schwarz, U. (1981) Heterogeneity of newly inserted and preexisting murein in the sacculus of Escherichia coli. Proc. Natl. Acad. Sci. US 78, 5856–5860.CrossRefGoogle Scholar
  7. Glauner, B., Höltje, J.-V. and Schwarz, U. (1988) The composition of the murein of Escherichia coli. J. Biol. Chem. 263, 10088–10095.PubMedGoogle Scholar
  8. Goodell, E. W. (1985) Recycling of murein by Escherichia coli. J. Bacteriol. 163, 305–310.PubMedGoogle Scholar
  9. Goodell, E. W., and Schwarz, U. (1983) Cleavage and resynthesis of peptide cross-bridges in Escherichia coli. J. Bacteriol. 156, 136–140.PubMedGoogle Scholar
  10. Hartman, R., Höltje, J.-V. and Schwarz, U. (1972) Target of penicillin action in Escherichia coli. Nature 235, 426–429.CrossRefGoogle Scholar
  11. Höltje, J.-V., and Tuomanen, E.I. (1991) The murein hydrolases of Escherichia coli: Properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137, 441–454.PubMedCrossRefGoogle Scholar
  12. Höltje, J.-V., and Schwarz, U. (1985) Biosynthesis and growth of the murein sacculus, pp. 77–119. In N. Nanninga (ed), Molecular cytology of E. coli. Academic Press, London.Google Scholar
  13. Kato, K., Umemoto, T., Sagawa, H. and Kotani, S. (1979) Lanthionine as an essential constituent of cell wall peptidoglycan of Fusobacterium nucleatum. Current Microbiol. 3, 147–151.CrossRefGoogle Scholar
  14. Koch, A. (1988), Biophysics of bacterial wall viewed as stress-bearing fabric. Microbiol. Rev. 52, 337–353.PubMedGoogle Scholar
  15. Lark, C, and Lark, K.G. (1959), The effect of D-amino acids on Alcaligenes fecalis. Can. J. Microbiol 5, 369–379.PubMedCrossRefGoogle Scholar
  16. Lark, C, Bradley, D. and Lark, K.G. (1963), The incorporation of D-methionine into bacterial cell wall — its incorporation into the R-layer and the structural consequences. Biochem. Biophys. Acta 78, 278–288.PubMedCrossRefGoogle Scholar
  17. Pelzer, H. (1969), Incorporation of diaminopimelic acid analogs into cell wall murein of Escherichia coli. VIth Meeting of FEBS. Abstract n° 143. Madrid.Google Scholar
  18. Pisabarro, A.G., de Pedro, M.A. and Vazquez, D. (1985), Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the state of growth of the culture. J. Bacteriol. 161, 238–242.PubMedGoogle Scholar
  19. Sprall, B.G. (1975), Distinct penicellin-binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc. Natl. Acad. Sci. US 72, 2999–3003.CrossRefGoogle Scholar
  20. Spratt, B.G. (1983), Penicillin-binding proteins and the future of β-lactam antibiotics. J. Gen. Microbiol. 129, 1247–1260.PubMedGoogle Scholar
  21. Tsuroka, T., Tamura, A., Miyata, A., Takei, T., Iwamatsu, K., Inouye, S. and Matsuhashi, M. (1984), Penicillin insensitive incorporation of D-amino acids into cell wall peptidoglycan influences the amount of bound lipoprotein in Escherichia coli. J. Bacteriol. 160, 889–894.Google Scholar
  22. Vasstrand, E.N., Jensen, H.B., Miron, T. and Hopstad, T. (1982), Composition of peptidoglycan in Bacteriodaceae: Determination and distribution of lanthionine. Infect. Immun. 36, 114–122.PubMedGoogle Scholar
  23. Waxman, D.J. and Strominger, J.L. (1983), Penicillin-binding proteins and the mechanisim of action of β-lactam antibiotics. Ann. Rev. Biochem. 52, 825–969.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Marta Caparrós
    • 1
  • José C. Quintela
    • 1
  • José I. Leguina
    • 1
  • Miguel A. de Pedro
    • 1
  1. 1.Centro de Bilogía Molecular C.S.I.C.-U.A.M.Facultad de Ciencias Universidad Autónoma de Madrid Campus de CantoblanceMadridSpain

Personalised recommendations