Conjugal Transfer in Anaerobic Bacteria

  • Francis L. Macrina


This chapter will review the biology and genetics of conjugative exchange in selected anaerobic bacteria. Specifically, conjugation in two genera, Bacteroides and Clostridium,will be the central theme. Conjugative systems in these two genera have been discovered and developed over the past 15 years. Although parallel systems are likely to emerge in other anaerobic bacteria, the advanced state of such systems in Bacteroides and Clostridium justifies limiting discussion in these two genera. There are multiple lines of interest driving the study of anaerobic bacteria. First, these organisms include important human and animal pathogens (11). Second, anaerobes, including Bacteroides and Clostridium,make up the bulk of the indigenous microflora of human beings and other mammals (21). This ecological position provides them with the opportunity to initiate infection at remote sites. Equally important, these organisms may contribute to pathology without leaving their normal niche. For example, both the Bacteroides and the clostridia have been implicated in the generation of potentially cocarcinogenic compounds in the human colon (10, 21). Colonic anaerobes also have been implicated in useful physiological process such as the production of nutrients and the degradation of complex dietary carbohydrates (42). Finally, anaerobic bacteria are of considerable interest to the biotechnologist. The metabolic diversity of the clostridia has been exploited in such processes as biodegradation, production of fuels and solvents, and biotransformations (23, 29, 70).


Anaerobic Bacterium Tetracycline Resistance Conjugal Transfer Clostridium Acetobutylicum Conjugative Plasmid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, L.J., and Rood, J.I., 9187, Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens, J. Bacteriol. 169: 1579–1584.Google Scholar
  2. 2.
    Bedzyk, L.A., Shoemaker, N.B., Young, K.E., and Salyers, A.A., 1992, Insertion and excision of Bacteroides conjugative chromosomal elements, J. Bacteriol. 174: 166–172.PubMedGoogle Scholar
  3. 3.
    Bertram, J., and Dürre, P., 1989, Conjugal transfer and expression of streptococcal transposons in Clostridium acetobutylicum, Arch. Microbiol. 151: 551–557.CrossRefGoogle Scholar
  4. 4.
    Brefort, G., Magot, M., Ionesco, H., and Sebald, M., 1977, Characterization and transferability of Clostridium perfringens plasmids, Plasmid 1: 52–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Butler, E., Joiner, K.A., Malamy, M., Bartlett, J.C., and Tally, F.P., 1984, Transfer of tetracycline or clindamycin resistance among strains Bacteroides fragilis in experimental abscesses, J. Infect. Dis. 150: 20–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Clewell, D.B., 1981, Plasmids, drug resistance, and gene transfer in the genus Streptococcus, Microbiol. Rev. 45: 409–436.PubMedGoogle Scholar
  7. 7.
    Clewell, D.B., 1990, Movable genetic elements and antibiotic resistance in enterococci, Eur. J. Clin. Microbial. Infect. Dis. 9: 90–102.CrossRefGoogle Scholar
  8. 8.
    Clewell, D.B., and Gawron-Burke, C., 1986, Conjugative transposons and the dissemination of antibiotic resistance in streptococci, Annu. Rev. Microbiol. 40: 635–659.PubMedCrossRefGoogle Scholar
  9. 9.
    Davies, A., Oultram, J., Pennock, A., Williams, D., Richards, D., Minton, N., and Young, M., 1988, Conjugal gene transfer in Clostridium acetobutylicum, in: Genetics and Biotechnology of Bacilli, ( A.T. Ganesan and J.A. Hoch, eds.), Academic Press, London, pp. 391–395.Google Scholar
  10. 10.
    Fears, R., and Sabine, J.R., 1986, Cholesterol 7-alpha-hydroxylase 7-alpha-monooxygenase), CRC Press, Boca Raton, Florida.Google Scholar
  11. 11.
    Finegold, S.M., and George, W.L., 1989, Anaerobic Infections in Humans, Academic Press, San Diego.Google Scholar
  12. 12.
    Guiney, D.G., and Bouic, K., 1990, Detection of conjugal transfer systems in oral, black-pigmented Bacteroides spp., J. Bacteriol. 172: 495–497.PubMedGoogle Scholar
  13. 13.
    Guiney, D.G., Hasegawa, P., and Davis, C.E., 1984, Plasmid transfer from Escherichia coli to Bacteroides fragilis: differential expression of antibiotic resistance phenotypes, Proc. Natl. Acad. Sci. USA 81: 72037206.Google Scholar
  14. 14.
    Guiney, D.G., and Yakobson, E., 1983, Location and nucleotide sequence of the transfer origin of the broad host range plasmid RK2, Proc. Natl. Acad. Sci. USA80: 3595–3598.Google Scholar
  15. 15.
    Guthrie, E.P., and Salyers, A.A., 1986, Use of targeted insertional mutagenesis to determine whether chondroitin lyase II is essential for condroitin sulfate utilization by Bacteroides thetaiotaomicron, J. Bacteriol. 166: 966–971.PubMedGoogle Scholar
  16. 16.
    Guthrie, E.P., and Salyers, A.A., 1987, Evidence that the Bacteroides thetaiotaomicron chondroitin lyase gene is adjacent to the chondro-4-sulfatase gene and may be part of the same operon, J. Bacteriol. 169: 1192 1199.Google Scholar
  17. 17.
    Guthrie, E.P., Shoemaker, N.B., and Salyers, A.A., 1985, Cloning and expression in Escherichia coli of a gene coding for chondroitin lyase from Bacteroides thetaiotaomicron, J. Bacteriol. 164: 510–515.PubMedGoogle Scholar
  18. 18.
    Halula, M., and Macrina, F.L., 1990, Tn5030: a conjugative transposon conferring clindamycin resistance in Bacteroides species, Rev. Infect. Dis. 12 (Suppl. 2): S235 — S242.Google Scholar
  19. 19.
    Hecht, D.W., and Malamy, M.H., 1989, Tn4399 a conjugal mobilizing transposon of Bacteroides fragilis, J. Bacteriol. 171: 3603–3608.Google Scholar
  20. 20.
    Hecht, D.W., Thompson, J.S., and Malamy, M.H., 1989, Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis, Proc. Natl. Acad. Sci. USA 86: 5340–5344.PubMedCrossRefGoogle Scholar
  21. 21.
    Hentges, D., 1983, Human Intestinal Microflora in Health and Disease, Academic Press, New York.Google Scholar
  22. 22.
    Ionesco, H., 1980, Transfert de la resistance a la tetracycline chez Clostridium difficile, Ann. Microbiol. Inst. Pasteur 131A: 171–179.Google Scholar
  23. 23.
    Jones, D.T., and Woods, D.R., 1986, Acetone-butanol fermentation revisited, Microbiol. Rev. 50: 484–524.PubMedGoogle Scholar
  24. 24.
    Jones, D.T., and Woods, D.R., 1986, Gene transfer, recombination and gene. cloning in Clostridium acetobutylicum, Microbiol. Sci. 3: 19–22.PubMedGoogle Scholar
  25. 25.
    Macrina, F.L., Mays, T.K., Smith, C.J., and Welch, R.A., 1981, Non-plasmid associated transfer of antibiotic resistance in Bacteroides, J. Antimicrob. Chemother. 8: 77–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Magot, M., 1983, Transfer of antibiotic resistances from Clostridium innocuum to Clostridium perfringens in the absence of detectable plasmid DNA, FEMS Microbiol. Lett. 18: 149–151.CrossRefGoogle Scholar
  27. 27.
    Magot, M., Fayolle, F., Privitera, G., and Sebald, M., 1981, Transposon-like structures in the B. fragilis MLS plasmid pIP410, MGG 181: 559–561.PubMedCrossRefGoogle Scholar
  28. 28.
    Mays, T.D., Smith, C.J., Welch, R.A., Delfini, C., and Macrina, F.L., 1982, Novel antibiotic resistance transfer in Bacteroides, Antimicrob. Agents Chemother. 21: 110–118.PubMedCrossRefGoogle Scholar
  29. 29.
    Minton, N.J., and Oultram, J.D., 1988, Host:vector systems for gene cloning in Clostridium, Microbiol. Sci. 5: 310–315.PubMedGoogle Scholar
  30. 30.
    Moore, W.E.C., and Holdeman, L., 1974, Human fecal flora: the normal flora of 20 Japanese-Hawaiians, Appl. Microbiol. 27: 961–979.PubMedGoogle Scholar
  31. 31.
    Odelson, D.A., Rasmussen, J.L., Smith, C.J., and Macrina, FL.,1987, Extrachromosomal systems and gene transmission in anaerobic bacteria, Plasmid 17: 87–109.Google Scholar
  32. 32.
    Oultram, J.D., Davies, A., and Young, M., 1987, Conjugal transfer of a small plasmid from Bacillus subtilis to Clostridium acetobutylicum by cointegrate formation with plasmid pAMßl, FEMS Microbiol. Lett. 42: 113–119.Google Scholar
  33. 33.
    Oultram, J.D., Peck, H., Brehm, J.K., Thompson, D.E., Swinfield, T.J., and Minton, N.P.,1988, Introduction of genes for leucine biosynthesis from Clostridium pasteurianum into C. acetobutylicum by cointegrate conjugal transfer, Mol. Gen. Genet. 214: 177–179.Google Scholar
  34. 34.
    Privitera, G., Dublanchet, A. and Sebald, M., 1979, Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis, J. Infect. Dis. 139: 97–101.PubMedCrossRefGoogle Scholar
  35. 35.
    Rasmussen, B.A., and Kovacs, E., 1991, Identification and DNA sequence of a new Bacteroides fragilis insertion sequence-like element, Plasmid 25: 141–144.PubMedCrossRefGoogle Scholar
  36. 36.
    Rasmussen, J.L., Odelson, D.A., and Macrina, FL., 1986, Complete nucleotide sequence and transcription of ermF, a macrolide-lincosamide-streptogramin B resistance determinant Bacteroides fragilis, J. Bacteriol. 168: 523–533.PubMedGoogle Scholar
  37. 37.
    Rasmussen, J.L., Odelson, D.A., and Macrina, F.L., 1987, Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis, J. Bacteriol. 169: 3573–3580.PubMedGoogle Scholar
  38. 38.
    Reysset, G., and Sebald, M., 1985, Conjugal transfer of plasmid mediated antibiotic resistance from streptococci to Clostridium acetylbutylicum, Ann. Microbiol. Inst. Pasteur 136: 275–282.CrossRefGoogle Scholar
  39. 39.
    Robillard, N.J.,Tally, F.P., and Malamy, M.H., 1985, Tn4400, a compound transposon isolated from Bacteroides functions in Escherichia coli, J. Bacteriol. 164:1248–1255.Google Scholar
  40. 40.
    Rogers, P., 1986, Genetics and biochemistry of Clostridium revelant to development of fermentation processes, Adv. Appl. Microbiol. 31: 1–60.CrossRefGoogle Scholar
  41. 41.
    Salyers, A.A., and Guthrie, E.P., 1988, A deletion in the chromosome of Bacteroides thetaiotaomicron abolishes production of chondroitinase II does not affect of the organisms in gastrointestinal tracts of germfree mice, Appl. Environ. Microbiol. 54: 1964–1969.PubMedGoogle Scholar
  42. 42.
    Salyers, A.A., Shoemaker, N.B., and Guthrie, E.P., 1987, Recent advances in Bacteroides genetics, CRC Crit. Rev. Microbiol. 14: 49–71.CrossRefGoogle Scholar
  43. 43.
    Sebald, M., Bouanchaud, D., Bieth, G., and Prevot, A.R., 1975, Plasmids controlling the resistance to several antibiotics in C. perfringens type A, strain 659, C. R. Acad. Sci. [D] (Paris) 280: 2401–2404.Google Scholar
  44. 44.
    Sebald, M., and Brefort, M.G., 1975, Transfer of the tetracycline-chloramphenicol plasmid in Clostridium perfringens, C. R. Acad. Sci. [D] (Paris) 281: 317–319.Google Scholar
  45. 45.
    Shoemaker, N.B., Barber, R.D., and Salyers, A.A., 1989, Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector, J. Bacteriol. 171: 1294–1302.PubMedGoogle Scholar
  46. 46.
    Shoemaker, N.B., Getty, C., Gardner, J.F., and Salyers, A.A., 1986, Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome, J. Bacteriol. 165: 929–936.Google Scholar
  47. 47.
    Shoemaker, N.B., Getty, G., Guthrie, E.P., and Salyers, A.A., 1986, Regions in Bacteroides plasmids pBFTM10 and pB8–51 that allow Escherichia coli-Bacteroides shuttle vectors to be mobilized by plasmids and by a conjugative Bacteroides tetracycline element, J. Bacteriol. 166: 959–965.PubMedGoogle Scholar
  48. 48.
    Shoemaker, N.B., Guthrie, E.P., Salyers, A.A., and Gardner, J.F., 1985, Evidence that the clindamycinerythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element, J. Bacteriol. 162: 626–632.PubMedGoogle Scholar
  49. 49.
    Shoemaker, N.B., and Salyers, A.A., 1987, Facilitated transfer of IncP beta R751 derivatives from the chromosome of Bacteroides uniformis to Escherichia coli by a conjugative Bacteroides tetracycline resistance element, J. Bacteriol. 169: 3160–3167.PubMedGoogle Scholar
  50. 50.
    Shoemaker, N.B., and Salyers, A.A., 1988, Tetracycline-dependent appearance of plasmidlike forms in Bacteroides uniformis 0061 mediated by conjugal Bacteroides tetracycline resistance elements, J. Bacteriol. 170: 1651–1657.PubMedGoogle Scholar
  51. 51.
    Shoemaker, N.B., and Salyers, A.A., 1990, A cryptic 65-kilobase-pair transposonlike element isolated from Bacteroides uniformis has homology with Bacteroides conjugal tetracycline resistance elements, J. Bacteriol. 172: 1694–1702.PubMedGoogle Scholar
  52. 52.
    Shoemaker, N.B., Wang, G., and Salyers, A.A., 1991, Evidence for natural transfer of a tetracycline resistance gene between the bacteria from the human colon and bacteria from the bovine rumen, Appl. Environ. Microbiol. 58: 1313–1320.Google Scholar
  53. 53.
    Smith, C.J., 1985, Characterization of Bacteroides ovatus plasmid pBI136 and of its clindamycin resistance region, J. Bacteriol. 161: 1069–1073.PubMedGoogle Scholar
  54. 54.
    Smith, C.J., 1987, Nucleotide sequence analysis of Tn4551: use of ermFS operon fusions to detect promoter activity in Bacteroides fragilis, J. Bacteriol. 169: 4589–4596.PubMedGoogle Scholar
  55. 55.
    Smith, C.J., and Macrina, F.L., 1984, Large transmissible clindamycin resistance plasmid in Bacteroides ovatus, J. Bacteriol. 158: 739–741.PubMedGoogle Scholar
  56. 56.
    Smith, C.J., and Spiegel, H., 1987, Transposition of Tn4551 in Bacteroides fragilis: identification properties of a new transposon from Bacteroides spp., J. Bacteriol. 169: 3450–3457.PubMedGoogle Scholar
  57. 57.
    Smith, C.J., Welch, R.A., and Macrina, F.L., 1982, Two independent conjugal transfer systems operating in Bacteroides fragilis V479–1, J. Bacteriol. 151: 281–287.PubMedGoogle Scholar
  58. 58.
    Smith, K.A., and Salyers, A.A., 1989, Cell-associated pullulanase from Bacteroides thetaiotaomicron: cloning, characterization, and insertional mutagenesis to determine role in pullulan utilization, J. Bacteriol. 171: 2116–2123.PubMedGoogle Scholar
  59. 59.
    Stevens, A.M., Shoemaker, N.B., and Salyers, A.A., 1990, The region of a Bacteroides conjugal chromosomal tetracycline resistance element which is responsible for production of plasmidlike forms from unlinked chromosomal DNA might also be involved in transfer of the element, J. Bacteriol. 172: 4271–4279.PubMedGoogle Scholar
  60. 60.
    Tally, E, Shimell, M., Carson, G., and Malamy, M., 1981, Chromosomal and plasmid-mediated transfer of clindamycin resistance in Bacteroides fragilis, in: Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids ( S.B. Levy and R.C. Clowes, eds.), Plenum, New York, p. 51.Google Scholar
  61. 61.
    Tally, E, Snydman, D., Gorbach, S., and Malamy, M., 1979, Plasmid mediated, transferable resistance to clindamycin and erythromycin in B. fragilis, J. Infect. Dis. 139: 83–88.PubMedCrossRefGoogle Scholar
  62. 62.
    Tally,E, Snydman, D., Shimell, M., and Malamy, M., 1982, Characterization of pBFTM10, a clindamycinerythromycin resistance transfer factor from Bacteroides fragilis, J. Bacteriol. 151: 686–689.Google Scholar
  63. 63.
    Valentine, P.J., Shoemaker, N.B., and Salyers, A.A., 1988, Mobilization of Bacteroides plasmids by Bacteroides conjugal elements, J. Bacteriol. 170: 1319–1324.PubMedGoogle Scholar
  64. 64.
    Volk, W.A., Bizzini, B., Jones, K.R., and Macrina, F.L., 1988, Inter-and intrageneric transfer of Tn916 between Streptococcus faecalis and Clostridium tetani, Plasmid 19: 255–259.PubMedCrossRefGoogle Scholar
  65. 65.
    Weisburg, W.G., Oyaizu, Y., Oyaizu, H., and Woese, C.R., 1985, Natural relationship between Bacteroides and flavobacteria, J. Bacteriol. 164: 230–236.PubMedGoogle Scholar
  66. 66.
    Welch, R.A., Jones, K.R., and Macrina, F.L., 1979, Transferable lincosamide-macrolide resistance in Bacteroides, Plasmid 2: 261–268.PubMedCrossRefGoogle Scholar
  67. 67.
    Welch, R.A., and Macrina, F.L., 1981, Physical characterization of Bacteroides fragilis R plasmid pBF4, J. Bacteriol. 145: 867–872.PubMedGoogle Scholar
  68. 68.
    Williams, D.R., Young, D.I., and Young, M., 1990, Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum, J. Gen. Microbiol. 136: 819–826.PubMedCrossRefGoogle Scholar
  69. 69.
    Wust, J., and Hardegger, U., 1983, Transferable resistance to clindamycin, erythromycin and tetracycline in Clostridium dicile, Antimicrob. Agents Chemosher. 23: 784–786.CrossRefGoogle Scholar
  70. 70.
    Young, M., Minton, N.P., and Staudenbauer, WL., 1989, Recent advances in the genetics of clostridia, FEMS Microbiol. Rev. 63: 301–326.CrossRefGoogle Scholar
  71. 71.
    Yu, P., and Pearse, L., 1986, Conjugal transfer of streptococcal antibiotic resistance plasmids into Clostridium acetobutylicum, Biotech. Len. 8: 469–474.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Francis L. Macrina
    • 1
  1. 1.Department of Microbiology and Immunology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations