EPR Studies in Autoxidation

  • K. M. Schaich
  • D. C. Borg


Autoxidation processes generally proceed via free radical chain processes involving both the autoxidizing compound itself and also, potentially, any other components of the system. Thorough understanding of such processes thus requires kinetic and structural data about the free radical reaction steps and intermediates comprising variously the initiation, propagation, and termination phases.


Electron Paramagnetic Resonance Methyl Linoleate Spin Trap Electron Paramagnetic Resonance Study Cumene Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Schaich, Free radical initiation in proteins and amino acids by ionizing and ultraviolet radiations and lipid oxidation. Part III. Lipid Oxidation, CRC Critical Reviews in Food Science and Nutrition 13, in press.Google Scholar
  2. 2.
    W. A. Pryor, The role of free radical reactions in biological systems, in: “Free Radicals in Biology,” Vol. I, W. A. Pryor, ed., Academic Press, New York (1976) pp. 1–49.CrossRefGoogle Scholar
  3. 3.
    K. Hasegawa, and L. K. Patterson, Pulse radiolysis studies in model lipid systems: formation and behavior of peroxy radicals in fatty acids, Photochem. Photobiol. 28: 817 (1978).CrossRefGoogle Scholar
  4. 4.
    L. K. Patterson, and K. Hasegawa, Pulse radiolysis studies in model lipid systems. The influence of aggregation on kinetic behavior of *OH induced radicals in aqueous sodium linoleate, Ber. Bunsenges. Phys. Chem. 82: 951 (1978).CrossRefGoogle Scholar
  5. 5.
    R. D. Small, Jr., J. C. Scaiano, and L. K. Patterson, Radical processes in lipids. A laser photolysis study of t-butoxy radical reactivity toward fatty acids, Photochem. Photobiol. 29: 49 (1979).CrossRefGoogle Scholar
  6. 6.
    H. M. Swartz, J. R. Bolton, and D. C. Borg, eds. “Biological Applications of Electron Spin Resonance,” Wiley ( Interscience ), New York (1972).Google Scholar
  7. 7.
    J. E. Wertz, and J. R. Bolton, “Electron Spin Resonance Elementary Theory and Practical Applications,” McGraw-Hill, New York (1972).Google Scholar
  8. 8.
    P. F. Knowles, D. Marsh, and H. W. E. Rattle, “Magnetic Resonance of Biomolecules,” John Wiley & Sons, New York (1976).Google Scholar
  9. 9.
    R. O. C. Norman, Fast reaction kinetics by esr methods, Pure Appl. Chem. 51: 1009 (1979).CrossRefGoogle Scholar
  10. 10a.
    D. C. Borg, An improved flow system for electron paramagnetic resonance spectrometry of aqueous solutions, Nature (London) 201: 1087 (1964).CrossRefGoogle Scholar
  11. 10b.
    D. C. Borg, Continuous flow methods adapted for epr apparatuses, in: “Rapid Mixing and Sampling Techniques in Biochemistry,” B. Chance, R. H. Eisenhardt, Q. H. Gibson, and K. K. Lonberg-Holm, eds., Academic Press, New York (1974), p. 135.Google Scholar
  12. 11.
    D. C. Borg, Applications of esr in biology, in: “Free Radicals in Biology,” Vol I, W. A. Pryor, ed., Academic Press, New York (1976) p. 69.CrossRefGoogle Scholar
  13. 12.
    D. C. Borg, and J. J. Elmore, Jr., Continuous Flow Apparatus for EPR Spectroscopy at 35 GHz, in: “Magnetic Resonance in Biological Systems”, A. Ehrenberg, B. Malmstrom, and T. Vänngârd, eds., Pergamon Press, Oxford (1967) p. 383.Google Scholar
  14. 13.
    K. M. Schaich, J. J. Elmore, Jr., and D. C. Borg, manuscript in preparation.Google Scholar
  15. 14.
    E. G. Janzen, Spin Trapping, Accts. Chem. Res. 4: 31 (1971)CrossRefGoogle Scholar
  16. 15.
    E. G. Janzen, and J. I.-P. Liu, Radical addition reactions of 5,5-dimethyl-l-pyrroline-l-oxide. Esr spin trapping with a cyclic nitrone, J. Magnetic Resonance 9: 510 (1973).Google Scholar
  17. 16.
    A. Mackor, Th. A. J. W. Wajer, and Th. J. deBoer, C-nitroso compounds - VI. Acyl-alkyl-nitroxides from acyl radicals and nitroso compounds as studied by ESR, Tetrahedron 24: 1623 (1968).CrossRefGoogle Scholar
  18. 17.
    J. R. Harbour, and M. L. Hair, Detection of superoxide ions in nonaqueous media. Generation by photolysis of pigment dispersions, J. Phys. Chem. 82: 1397 (1978).CrossRefGoogle Scholar
  19. 18.
    C. A. Evans, Spin trapping, Aldrichimica Acta 12: 23 (1979).Google Scholar
  20. 19.
    S. Forshult, C. Lagercrantz, and K. Torssell, Use of nitroso compounds as scavengers for the study of short lived free radicals in organic reactions, Acta Chem. Scand. 23: 522 (1969).CrossRefGoogle Scholar
  21. 20.
    P. Riesz, and S. Rustgi, Aqueous radiation chemistry of protein and nucleic acid constituents: esr and spin-trapping studies, Radiat. Phys. Chem. 13: 21 (1979).CrossRefGoogle Scholar
  22. 21.
    P. J. Carmichael, B. G. Gowenlock and C. A. F. Johnson, Studies in vacuum ultraviolet photochemistry. III 2methyl-2-nitropropane, 2-methyl-2-nitrosopropane, and t-butyl nitrite, J. Chem. Soc. Perkins II, 2019 (1973).Google Scholar
  23. 22.
    J. C. Stowell, tert-Alkylnitroso compounds. Synthesis and dimerization equilibria, J. Org. Chem. 36: 3055 (1971).CrossRefGoogle Scholar
  24. 23.
    E. G. Janzen, A critical look at spin-trapping in biological systems, in: “Free Radicals in Biology,” Vol. IV, W. A. Pryor, ed., Academic Press, New York, in press.Google Scholar
  25. 24a.
    G. Czapski, Electron spin resonance studies of short-lived radicals generated by fast flow techniques in aqueous solutions, J. Phys. Chem. 75: 2957 (1971).CrossRefGoogle Scholar
  26. 24b.
    G. Czapski, H. Levanon, and A. Samuni, Esr studies of uncomplexed and complexed HO2 radical formed in the reaction of H202 with Ce4+, Fe2+, and Ti3+ ions, Israel J. Chem. 7: 375 (1969).Google Scholar
  27. 25.
    Y. S. Chiang, J. Craddock, D. Mickewich and J. Turkevich, Study with fast-mixing techniques of the titanium (III) and hydrogen peroxide reaction, J. Phys. Chem. 70: 3509 (1966).CrossRefGoogle Scholar
  28. 26.
    G. Czapski, A. Samuni, and D. Meisel, The reactions of organic radicals formed by some “Fenton-like” reagents, J. Phys. Chem. 75: 3271 (1971).CrossRefGoogle Scholar
  29. 27.
    K. M. Schaich and D. C. Borg, manuscript in preparation.Google Scholar
  30. 28.
    K. M. Schaich, unpublished data.Google Scholar
  31. 29.
    R. A. Floyd, and L. M. Soon, Spin trapping in biological systems. Oxidation of the spin trap 5,5-dimethylpyrroline-1-oxide by a hydroperoxide-hematin system, Biochem. Biophys. Res. Commun. 74: 79 (1977).CrossRefGoogle Scholar
  32. 30a.
    E. G. Janzen, E. R. Davis, and Dale E. Nutter, Jr., On the structure of acyl nitroxides (nitroxones), Tetrahedron Letters 3309 (1978).Google Scholar
  33. b. G. M. Rosen and E. J. Rauckman, Spin trapping of cumene hydroperoxide radical, poster presentation, this symposium.Google Scholar
  34. 31.
    F. P. Sargent, and E. M. Gardy, Spin trapping of radicals formed during radiolysis of aqueous solutions, Can. J. Chem. 54: 275 (1976).CrossRefGoogle Scholar
  35. 32.
    P. H. Kasai and D. McLeod, Jr., Detection by spin trapping of H and OH radicals generated during electrolysis of water, J. Phys. Chem. 82: 619 (1978).CrossRefGoogle Scholar
  36. 33.
    T. Doba, T. Ichikawa, and H. Yoshida, Kinetic studies of spin-trapping reactions. I. The trapping of the t-butyl radical generated by the photodissociation of 2methyl-2-nitrosopropane by several spin-trapping agents, Bull. Chem. Soc. Japan 50: 3158 (1977).Google Scholar
  37. 34.
    C.-S. Lai, and L. H. Piette, Further evidence for OH radical production in Fenton’s reagent, Tetrahedron Letters 775 (1979).Google Scholar
  38. 35.
    E. G. Janzen, D. E. Nutter, Jr., E. R. Davis, et al., On spin-trapping hydroxyl and hydroperoxyl radicals, Can. J. Chem. 56: 2237 (1978).CrossRefGoogle Scholar
  39. 36.
    J. L. Poyer, R. A. Floyd, P. B. McCay, E. G. Janzen and E. R. Davis, Spin-trapping of the trichloromethyl radical produced during enzymic NADPH oxidation in the presence of carbon tetrachloride or bromotrichloromethane, Biochim. Biophys. Acta 539: 402 (1978).CrossRefGoogle Scholar
  40. 37.
    B. Kalyanaraman, R. P. Mason, E. Perez-Reyes, C. F. Chignell, C. R. Wolf, R. M. Philpot, Characterization of the free radical formed in aerobic microsomal incubations containing carbon tetrachloride and NADPH, Biochem. Biophys. Res. Commun. 89: 1065 (1979).CrossRefGoogle Scholar
  41. 38a.
    J. J. M. C. DeGroot, G. J. Garssen, J. F. G. Vliegenthart, and J. Boldingh, The detection of linoleic acid radicals in the anaerobic reaction of lipoxygenase, Biochim. Biophys. Acta 326: 279 (1973).CrossRefGoogle Scholar
  42. 38b.
    J. Sekiya, H. Soshima, T. Kajiwara, T. Togo and A. Hatanaka, Purification and some properties of potato tuber lipoxygenase and detection of linoleic acid radical in the enzyme reaction, Agric. Biol. Chem. 41: 827 (1977).CrossRefGoogle Scholar
  43. 39.
    J. A. Howard, and J. C. Tait, Electron paramagnetic resonance spectra of the tert-butylperoxy and tertbutoxy adducts to phenyl tert-butyl nitrone and 2methyl-2-nitrosopropane, Can. J. Chem. 56: 176 (1978).CrossRefGoogle Scholar
  44. 40.
    N. Ohto, N., E. Niki, and Y. Kamiya, Study of autoxidation by spin trapping. Spin trapping of peroxyl radicals by phenyl N-t-butyl nitrone, J. Chem. Soc. Perkin II 1770 (1977).Google Scholar
  45. 41.
    M. V. Merritt and R. A. Johnson, Spin trapping, alkylperoxy radicals, and superoxide-alkyl halide reactions, JACS 99: 3713 (1977).CrossRefGoogle Scholar
  46. 42.
    E. G. Janzen and B. J. Blackburn, Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (spin trapping). Photolysis of organolead, -tin, and -mercury compounds, JACS 91: 4481 (1969).CrossRefGoogle Scholar
  47. 43.
    Y. Maeda, K. U. Ingold, Kinetic applications of electron paramagnetic resonance spectroscopy. 34. Rate constants for spin trapping. 2. Secondary alkyl radicals, JACS 101: 4975 (1979).CrossRefGoogle Scholar
  48. 44.
    P. Schmid and K. U. Ingold, Kinetic applications of electron paramagnetic resonance spectroscopy. 31. Rate constants for spin trapping. 1. Primary alkyl radicals, JACS 100: 2493 (1978).CrossRefGoogle Scholar
  49. 45.
    R. Overend and G. Paraskevopoulos, Rates of OH Radical Reactions. 4. Reactions with methanol, ethanol, 1-propanol, and 2-propanol at 296 K, J. Phys. Chem. 82: 132 (1978).CrossRefGoogle Scholar
  50. 46.
    E. G. Janzen, D. E. Nutter, Jr. and C. A. Evans, Rate constants for the hydrogen atom abstraction by phenyl radical from methanol, ethanol, and 2-propanol as studied by electron spin resonance spin trapping techniques, J. Phys. Chem. 79: 1983 (1975).Google Scholar
  51. 47.
    K. U. Ingold, Peroxy radicals, Accts. Chem. Res. 2: 1 (1969).CrossRefGoogle Scholar
  52. 48.
    G. E. Adams, J. W. Boag, and B. D. Michael, Transient spectra of some radical anions produced by reactions of the hydroxyl radical, Proc. Chem. Soc. 411 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • K. M. Schaich
    • 1
  • D. C. Borg
    • 1
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations