Advertisement

Singlet Oxygen-Initiated Photooxidation of Unsaturated Fatty Acid Esters and Inhibitory Effects of Tocopherols and β-Carotene

  • Setsuro Matsushita
  • Junji Terao

Abstract

It has been suggested that photosensitized oxidation initiates oxidative deterioration of vegetable oils (1–3). Chlorophyll-like pigments present in oils seem to act as sensitizers by absorbing visible light to produce hydroperoxides in unsaturated fatty acids. This reaction has been categorized into two classes, Type I and Type II, as mentioned by Foote (4). Type I reaction involves the production of free radicals by interaction of the excited sensitizer with a substrate. In the Type II process, an excited sensitizer produces singlet oxygen by transferring excitation from the sensitizer to oxygen. This active oxygen molecule reacts with olefinic double bonds to produce hydroperoxides by a concerted ene type mechanism (5).

Keywords

Singlet Oxygen Methyl Oleate Methyl Linoleate Isomeric Composition Singlet Oxygen Quencher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. R. Rawls and P. A. Van Santen, Possible role for singlet oxygen in the initiation of fatty acid autoxidation, J. Am. Oil Chem. Soc. 47: 121 (1970).CrossRefGoogle Scholar
  2. 2.
    A. H. Clements, R. H. Van Den Engh, J. Frost, K. Hoogenhout, and J. R. Nool, Participation of singlet oxygen in photosensitized oxidation of 1,4-dienoic systems and photooxidation of soybean oil, J. Am. Oil Chem. Soc.Google Scholar
  3. 3.
    D. J. Carlsson, T. Suprunchuk, and D. M. Willies, Photooxidation of unsaturated oils. Effect of singlet oxygen quenchers, J. Am. Oil Chem. Soc. 53: 656 (1976).CrossRefGoogle Scholar
  4. 4.
    C. S. Foote, Photosensitized oxidation and singlet oxygen consequence in biological systems. In: “Free radicals in biology” Vol. II, W. E. Pryor, ed., Academic Press, New York (1976).Google Scholar
  5. 5.
    C. S. Foote, Mechanism of addition of singlet oxygen to olefins and other substances, Pure Appl. Chem. 27: 635 (1971).Google Scholar
  6. 6.
    N. A. Khan, W. O. Lundberg, R. T. Holmann, Displacement analysis of lipids IX. Products of the oxidation of methyl linoleate, J. Am. Oil Chem Soc. 76: 1779 (1954).CrossRefGoogle Scholar
  7. 7.
    D. Cobern, J. S. Hobbs, R. A. Lucas, and D. J. Mackenzie, Location of hydroperoxide group in monohydroperoxides formed by chlorophyll-photosensitized oxidation of unsaturated esters. J. Chem. Soc. (C): 1897 (1966).Google Scholar
  8. 8.
    G. E. Hall and D. G. Roberts, A. study of infrared and proton magnetic resonance spectroscopy of the monohydroperoxides of oleate and linoleate esters, J. Chem. Soc. (B): 1109 (1966).Google Scholar
  9. 9.
    E. Federi, G. Gamurati, and G. Jacini, Structures of monohydroperoxides formed by chlorophyll photosensitized oxidation of methyl linoleate, J. Am. Oil Chem. Soc. 48: 787 (1973).Google Scholar
  10. 10.
    J. Terao and S. Matsuchita, Structures of monohydroperoxides produced from chlorophyll sensitized photooxidation of methyl linoleate, Agric. Biol. Chem. 41: 2467 (1977).Google Scholar
  11. Il. H. W.-S. Chan, Photosensitized oxidation of unsaturated fatty acid methyl esters. The identification of different pathways, J. Am. Oil Chem. Soc. 54: 100 (1977).CrossRefGoogle Scholar
  12. 12.
    J. Terao and S. Matsushita, Products formed by photosensitized oxidation of unsaturated fatty acid esters, J. Am. Oil Chem. Soc. 54: 234 (1977).CrossRefGoogle Scholar
  13. 13.
    E. N. Frankel, W. E. Neff, M. K. Rohwedder, B. P. S. Khambay, R. F. Garwood, and B. C. L. Weedon, Analysis of autoxidized fat by gas chromatography mass spectrometry III. Methyl linolenate, Lipids 12: 1055 (1977).CrossRefGoogle Scholar
  14. 14.
    T. Umehara, J. Terao, and S. Matsushita, Photosensitized oxidation of oils with food colors, J. Agric. Chem. Soc. Japan 53: 51 (1979).Google Scholar
  15. 15.
    J. Terao and S. Matsushita, Reactivities and products in photosensitized oxidation of unsaturated triglycerides, Agric. Biol. Chem. 42: 667 (1978).Google Scholar
  16. 16.
    S. R. Farrenholtz, F. H. Doleiden, A. M. Trozzole, and A. A. Lamola, On the quenching of singlet oxygen by a-tocopherol, Photochem. Photobiol. 20: 505 (1974).CrossRefGoogle Scholar
  17. 17.
    C. S. Foote, T.-Y. Ching and G. G. Geller, Chemistry of singlet oxygen. XVIII. Rates of reaction and quenching of cxtocopherol and singlet oxygen, Photochem. Photobiol. 20: 511 (1974).CrossRefGoogle Scholar
  18. 18.
    B. Stevens, R. D. Small Jr., and S. R. Perez, The photoperoxydation of unsaturated organic molecules; XIII. Singlet oxygen quenching by a-tocopherol, Photochem. Photobiol. 20: 511 (1974).CrossRefGoogle Scholar
  19. 19.
    G. W. Grams and K. Eskins, Dye-sensitized photooxidation of tocopherols: correlation between singlet oxygen reactivity and vitamin E activity, Biochemistry 11: 606 (1972).CrossRefGoogle Scholar
  20. 20.
    C. S. Foote and R. W. Denny, Chemistry of singlet oxygen. VII. Quenching by ß-carotene, J. Am. Oil Chem. Soc. 90: 6233 (1968).CrossRefGoogle Scholar
  21. 21.
    R. H. Young and D. R. Brewer, The mechanism of quenching of singlet oxygen. In: “Singlet Oxygen” B. Ranby and J. F. Rabek, ed., John Wilis & Sons, Chichester (1978).Google Scholar
  22. 22.
    R. Yamauchi and S. Matsushita, Quenching effects of tocopherols on the methyl linoleate photooxidation and their oxidation products, Agric. Biol. Chem. 41: 1425 (1977).Google Scholar
  23. 23.
    C. S. Foote, Y. C. Chang, and R. W. Denny, Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection, J. Am. Oil Chem. Soc. 92: 5216 (1970).Google Scholar
  24. 24.
    R. H. Young, K. Wehrly, and R. L. Martin, Solvent effects in dye sensitized photooxidation reactions, J. Amer. Chem. Soc. 93: 57774 (1971).Google Scholar
  25. 25.
    J. Terao and S. Matsushita, Further oxygenated compounds produced from methyl linoleate monohydroperoxides at the process of autoxidation, Agric. Biol. Chem. 39: 2027 (1975).Google Scholar
  26. 26.
    J. Terao and S. Matsushita, The isomeric compositions of monohydroperoxides produced by oxidation of unsaturated fatty acid esters with singlet oxygen, J. Food Process. Preserv. in contribution.Google Scholar
  27. 27.
    A. U. Khan and M. Kasha, Red chemiluminescence of molecular oxygen in aqueous solution, J. Chem. Phys. 39: 2105 (1963).CrossRefGoogle Scholar
  28. 28.
    E. N. Frankel, C. D. Evans, D. G. McConnel, E. Selke, and H. J. Dutton, Autoxidation of methyl linoleate, Isolation and characterization of hydroperoxides, J. Org. Chem. 26: 4663 (1961).CrossRefGoogle Scholar
  29. 29.
    E. N. Frankel, W. E. Neff, M. K. Rohwedder, B. P. S. Khambay, R. F. Garwood, and B. C. L. Weedon, Analysis of autoxidized fats by gas chromatography mass spectrometry. I. Methyl oleate, Lipids 12: 901 (1977).CrossRefGoogle Scholar
  30. 30.
    E. N. Frankel, W. E. Neff, M. K. Rohwedder, B. P. S. Khambay, R. F. Garwood, and B. C. L. Weedon, Analysis of autoxidized fats by gas chromatography mass spectrometry. II. Methyl linoleate, Lipids 12: 908 (1977).CrossRefGoogle Scholar
  31. 31.
    E. N. Frankel, W. E. Neff, W. K. Rohwedder, B. P. S. Khambay, R. F. Garwood, and B. C. L. Weedon, Analysis of autoxidized fats by gas chromatography mass spectrometry. III. Methyl linolenate, Lipids 12: 1055 (1977).CrossRefGoogle Scholar
  32. 32.
    J. J. Jen and G. Mackinney, On the photodecomposition of chlorophyll in vitro. II. Intermediate and breakdown products, Photochem. Photobiol. 11: 303 (1970).CrossRefGoogle Scholar
  33. 33.
    M. M. Morris, Y. Park, and G. Mackinney, On the decomposition of chlorophyll in vitro, J. Agr. Food Chem. 21: 277 (1973).CrossRefGoogle Scholar
  34. 34.
    J. Terao and S. Matsushita, Singlet oxygen initiated photo-oxidation of unsaturated fatty acid esters and inhibitory effects of tocopherols and ß-carotene, J. Food Process. Preserv. in contribution.Google Scholar
  35. 35.
    R. L. Clough, B. G. Yee and C. S. Foote, Chemistry of singlet oxygen 30. The unstable primary product of tocopherol photooxidation, J. Amer. Chem. Soc. 101: 683 (1979).CrossRefGoogle Scholar
  36. 36.
    N. Ikeda and K.Fukuzumi, Tocopherols and antioxidants in autooxidation of methyl linoleate I. Antioxidant activity and termination mechanism, J. Japan Oil Chem. Soc. 26: 343 (1977).Google Scholar
  37. 37.
    G. R. Seely and T. H. Meyer, Photosensitized oxidation of 8-carotene, Photochem. Photobiol. 13: 27 (1971).CrossRefGoogle Scholar
  38. 38.
    K. Tsukida, M. Yokota, and K. Ikeuchi, Epoxy carotenoids. X. Irradiation of all-trans-8-carotene, Vitamins (Japan) 33: 174 (1966).Google Scholar
  39. 39.
    A. Satter and J. M. Deman, Stability of edible oils and fats to fluorescent light irradiation, J. Am. Oil Chem. Soc. 53: 473 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Setsuro Matsushita
    • 1
  • Junji Terao
    • 1
  1. 1.Research Institute for Food ScienceKyoto UniversityKyotoJapan

Personalised recommendations