Intracellular Mechanisms for Lipid Peroxide Decomposition

  • Peter J. O’Brien


Polyunsaturated fatty acids, a major component of many vegetable or fish oils, undergo autoxidation at ambient temperatures to yield hydroperoxides and a wide range of secondary degradation products associated with subsequent rancidity. Thus high peroxide values occur after prolonged storage, exposure to sunlight, increased temperatures and contact with iron or copper as in cooking vessels (Frazer, 1962). Dietary fatty acid hydro-Deroxides can be toxic to the gastrointestinal tract and can be carcinogenic (Cutler and Hayward, 1974; Cutler and Schneider, 1973). Peroxidation of the lipids of animal tissues in vivo may also occur and be enhanced by a Vitamin E or a selenium deficient diet particularly if the diet is rich in polyunsaturated fatty acids. Peroxidation of the lipids of animal tissues in vivo may also be induced by carbon tetrachloride, ethanol or orotic acid, in oxidant induced lung damage as during air pollution, in oxygen toxicity, in some phases of atherosclerosis and by various drugs, herbicides, pesticides or carcinogens. The metals, iron, copper or lead also enhance lipid peroxidation in vivo (Hoechstra, 1980). The addition of antioxidants, Vitamin E, selenium or sulfur amino acids to the diet greatly reduced the associated biochemical and pathological changes of these conditions.


Glutathione Peroxidase Glutathione Peroxidase Activity Selenium Deficiency Orotic Acid Cumene Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, D.A. and Buchanan, J.D. (1978) Photochemistry and Photo-biology 28: 743–755.CrossRefGoogle Scholar
  2. Arundi, J., Hogberg, J. and Stead, A.H. (1979) Acta. Toxicol. 45:45–51.Google Scholar
  3. Asada, K. and Kanematsu, S. (1976) Agr. Biol. Chem. 40:1891–1892.Google Scholar
  4. Barber, A.A. and Bernheim, F. (1967) Advances in Gerontological Google Scholar
  5. Research (Stehler, B. ed.) Vol. 12:pp. 355–403. Academic Press, New York.Google Scholar
  6. Barka, T., Scheyer, P.J., Schaffner, F. and Popper, H. (1964) Arch. Pathol. 78:331–368.Google Scholar
  7. Barton, J.P. and Packer, J.E. (1970) Int. J. Radiat. Phys. Chem. 2:159.Google Scholar
  8. Bielski, B.H.J. and Shreve, G.C. (1979) Ciba Foundation Symposium 65 “Oxygen Free Radicals and Tissue Damage Excerpta Media” Boyd, M.R. Catignani, Sasame, H.A., Mitchell, J.R. and Stiko, A.W. (1979) Amer. Rev. Resp. Dis. 121: 93–99.Google Scholar
  9. Bryant, R.W. and Bailey, J.M. (1980) Biochem. Biophys. Res. Comm. 92:268–276.CrossRefGoogle Scholar
  10. Bryant, R.W. and Bailey, J.M. (1979) Prostaglandins 17: 9–18.Google Scholar
  11. Burk, R.F. and Lane, J.M. (1979) Toxicol. and Appl. Pharmacol. 50: 467.CrossRefGoogle Scholar
  12. Burk, R.F., Nisiki, K., Lawrence, R.A. and Chance, B. (1978) Eur. J. Biochem. Chem. 253:43–46.Google Scholar
  13. Carroll, K.K. (1977) Function and Biosynthesis of Lipids (ed. Nicolas, G.B., Rodolfo, R.B. and Norma, M.H.). 535–546, Plenum Press, New York.Google Scholar
  14. Cash, W.D. and Gardy, M. (1965) J. Biol. Chem. 240:3450.Google Scholar
  15. Chan, S.W., Chan, P.C. and Bielski, B.H.J. (1974) Biochem. Biophys. Acta. 338:213–223.CrossRefGoogle Scholar
  16. Chan, P.G. and Bielski, B.H.J. (1973) J. Amer. Chem. Soc. 95:5504–5508.Google Scholar
  17. Christophersen, B.O. (1968a) Biochem. Biophys. Acta. 164:35 Christophersen, B.O. (1968b) Biochem. J. 106:515.Google Scholar
  18. Cohen, G. (1979) Ciba Foundation Symposium 65 Oxygen Free Radicals and Tissue Damage pp. 177–183 Excerpta Medica.Google Scholar
  19. Cook, H.W. and Lands, W.E.M. (1976) Nat. 260: 630–632.Google Scholar
  20. Cutler, M.G., Hayward, M.A. (1974) Nutr. Metab. 16:87.Google Scholar
  21. Cutler, M.G., Schneider, R., (1973) Food Cosmet. Toxicol. 11:443.CrossRefGoogle Scholar
  22. Egan, R.W., Gale, P.H., Van den Heuvel, W.J.A., Baptista, E.M. and Keuhl, F. (1980) J. Biol. Chem. 258:323–326.Google Scholar
  23. Farag, R.S., Osman, S.A. and Hallabo, S.A.S. (1978) J. Amer. Oil Chem. Soc. 55:703–707.Google Scholar
  24. Flohe, L., Gunzler, W., Jung, G., Schaich, E., and Schneider, F.(1971) Hoppe-Seyler’s, Z. Physiol. Chem. 352:151–169.CrossRefGoogle Scholar
  25. Flohe, L. Loschen, G., Gunzler, W.A. and Schock, H.H. (1973) FEBS Letters 32: 132–134.Google Scholar
  26. Flohe, L., Loschen, G., Gunzler, W.A. and Eichele, E. (1972) Hoppe-Seyler’s, Z. Physiol. Chem. 353:987–999.Google Scholar
  27. Flohe, L. and Zimmermann, R. (1970) Biochem. Biophys. Acta. 223: 210–213.CrossRefGoogle Scholar
  28. Forstrom, J.W. and Tappel, A.L. (1979) J. Biol. Chem. 254:2888–2891.Google Scholar
  29. Frazer, A.C. (1962) Proc. Nutr. Soc. 21:42.Google Scholar
  30. Freeman, I.P. and O’Brien, P.J. (1967) Biochem. J. 102:9P.Google Scholar
  31. Friedman, M. (1973) The chemistry and biochemistry of the sulfydryl group on amino acids, peptides and proteins. Pergamon Oxford.Google Scholar
  32. Ganther, H.E., Hafeman, D.G., Lawrence, R.A., Serfass, R.E. and Hoekstra, W.G. (1976) Trace elements in human health and disease. (Prasad, A. and Oberleas, D. Eds.) p. 171 Academic Press, NY.Google Scholar
  33. Gardner, H.W., Kleiman, D. and Inglett, G.E. (1977) Lipids 12:655–660.Google Scholar
  34. Gardner, H.W.,Weisleder, D. and Kleiman, R. (1976) Lipids 11:127134.Google Scholar
  35. Gilbert, D.L., Gerschman, R., Cohen, J. and Sherwood, W. (1957) J. Amer. Chem. Soc. 79:56–77.CrossRefGoogle Scholar
  36. Goldfisher, S. and Sternlieb, I.L. (1968) Amer. J. Pathol. 53:883–901.Google Scholar
  37. Guanier, C., Flamigni, F. and Rossoni-Caldarena, C. (1979) Biochem. Biophys. Res. Comm. 89:678–684.Google Scholar
  38. Gunzler, W.A., Vergin, H., Meuller, I., and Flohe, L. (1972) HoppeSeyler’s Z. Physiol. Chem. 353:1001–1004.Google Scholar
  39. Gutheridge, J.M.C. (1977) Biochem. Biophys. Res. Comm. 77:379–386.Google Scholar
  40. Hafeman, D.G. and Hoechstra, W.G. (1977) J. Nutr. 107:666–672.Google Scholar
  41. Halliwell, B. (1978) Photochem. and Photobiol. (1968) 28: 757–764.CrossRefGoogle Scholar
  42. Hammarstrom, S., Murphy, R.C., Samuelsson, B., Clark, D.A., Mioskowski, C. and Corey, E.J. (1979) Biochem. Biophys. Res.Comm. 91:1266–1272.Google Scholar
  43. Hawco, F.J., O’Brien, P.J. (1978) Biochem. Soc. Trans. 6:1169–1174.Google Scholar
  44. Hawco, F.J., Hulett, L. and O’Brien, P.J. (1980) Microsomes, Drug Oxidations and Chemical Carcinogenesis. Coon, M.J., Conney, A.H., Gillette, J.R., Gelboin, H.N., Estabrook, R.W., O’Brien, P.J., Academic Press.Google Scholar
  45. Hochstein, P. and Ernster, L. (1963) Biochem. Biophys. Res. Comm. 12:388–394.Google Scholar
  46. Hochstein, P. and Utley, H. (1968) Mol. Pharmacol. 4:574–579. Hoechstra, W.G. (this symposium).Google Scholar
  47. Hoffsten, P.E., Hunter, F.E., Gelbicki, Weinstein, J.M. and Achneider, A. (1964) J. Biol. Chem. 239:614.Google Scholar
  48. Hogberg, J. and Kristoferson, A. (1977) Eur. J. Biochem. 74:77–82.Google Scholar
  49. Hogberg, J., Moldeus, P., Arbrough, B., O’Brien, P.J. and Orrenius, S., Eur. J. Biochem. 59:457–462.CrossRefGoogle Scholar
  50. Hogberg, J., Orrenius, S. and O’Brien, P.J. (1975) Eur. J. Biochem. 59:449–455.Google Scholar
  51. Hrycay, E.G., Jones, H.G., Lu, A.M.H. and Levin, W. (1973) Arch. Biochem. Biophys. 166:145–151.Google Scholar
  52. Hrycay, E.G. and O’Brien, P.J. (1971) Arch. Biochem. Biophys. 147: 28–33.CrossRefGoogle Scholar
  53. Hulett, L. and O’Brien, P.J. (1980) Prostaglandins (in press). Hunter, F.E., Gelbicki, J.M., Hoffsten, P.E., Weinsten, J. (1962) Biochem. Biophys. Res. Comm. 7:276.Google Scholar
  54. Jakoby, W.B. (1977) Advan. Enzymo1.46:381–412.Google Scholar
  55. Jocelyn, P.C. (1964) Nature 1115.Google Scholar
  56. Jones, D.P., Moldeus, P., Howard, Stead, A., Ormstad, K., Jornwall, H., Orrenius, S. (1979) J. Biol. Chem. 254:2787–2792.Google Scholar
  57. Jones, D.R., Thor, H., Anderson, B. and Orrenius, S. (1978) J. Biol.Chem. 6031–6039.Google Scholar
  58. Ketley, J.N., Habig, W.H., and Jakoby, W.B. (1975) J. Biol. Chem. 250:8670.Google Scholar
  59. Klayman, D.L. (1973) Organic Selenium Compounds: Their Chemistry and Biology. (Klayman, D.L. and Gunther, W.H. Eds.) 67–171, Wiley Interscience, New York.Google Scholar
  60. Ladensten, R., Epp. O., Bartels, K., Jones, A., Huber, R., Wendel, 0. (1979) J. Molec. Biol. 134:199–218.Google Scholar
  61. Lal, M. (1976) Can. J. Chem. 54:1092.Google Scholar
  62. Lawrence, R.A. and Burk, R.F. (1976) Biochem. Biophys. Res. Comm. 71:952–958.Google Scholar
  63. Lawrence, R.A. and Burk, R.F. (1978) J. Nutr. 108:211–215.Google Scholar
  64. Lawrence, R.A., Parkhill, L.K., Burk, R.F. (1978) J. Nutr. 108:981987.Google Scholar
  65. Lawrence, R.A., Burk, R.F. and Trumble, M.J. (1979) Federation Proceedings Absts. No. 856.Google Scholar
  66. Levander, D.A., Morris, V.C. and Higgs, D.J. (1973) Biochemistry 12:4591–4595.Google Scholar
  67. Lin, W.S., Armstrong, D.A. and Gaucher, G.M. (1975) Can. J. Biochem. 53:298–307.Google Scholar
  68. Lindstrom, T.D., Anders, M.W. and Remmer, H. (1978) Gsgs. Mol. Pathol. 28: 48–57.CrossRefGoogle Scholar
  69. Listowsky, I., Glutathione, Kamisaka, K., Ishitani, K., and Arias, I.M. in Glutahione Metabolism and Function. I.M. Arias and Jakoby, W.B. Eds. Raven Press, New York, Little, C. and O’Brien, P.J. (1967) 01976 p. 213.Google Scholar
  70. Little, C. and O’Brien, P.J. Arch. Biochem. Biophys. 122:406.Google Scholar
  71. Little, C. and O’Brien, P.J. (1967) Biochem. J. 102:10.Google Scholar
  72. Little, C. and O’Brien, P.J. (1968) Biochem. J. 106:419.Google Scholar
  73. Little, C. and O’Brien, P.J. (1969) Can. J. Biochem. 47:493–499.Google Scholar
  74. Massey, V., Williams, C. and Palmer, G., (1971) Biochem. Biophys. Acta. 31:459–468.Google Scholar
  75. McCay, P.B., Gibson, D.D., Fong, K.L., Hornbrook, K.R. (1976) Biochem. Biophys. Acta. 431:459–468.Google Scholar
  76. Miyamoto, T., Ogino, N., Yamamoto, S. and Hayaishi, 0. (1976) J. Biol. Chem. 251: 2629–2636.Google Scholar
  77. Misra, H.P. (1974) J. Biol. Chem. 249:2151–2155.Google Scholar
  78. Moldeus, P., Jones, D.P., Ormstad, K. and Orrenius, S. (1978) Biochem. Biophys. Res. Comm. 83:195–200.Google Scholar
  79. Morrissey, P.G. and O’Brien, P.J. (1980) Canad. J. Biochem. (in press).Google Scholar
  80. Murphy, R.C., Hammarstrom, S., Samuelsson, B. (1979) Proc. Natl. Acad. Sci. 76:4275–4279.Google Scholar
  81. Neubert, D., Wojtczak, A.B., Lehringer, A.L. (1962) Proc. Nat. Acad. Sci. 1651–1658.Google Scholar
  82. Nishiki, K., Jamieson, D., Oshino, N., and Chance, B. (1976) Biochem. J. 160: 343–355.Google Scholar
  83. O’Brien, P.J. (1980a) unpublished observations.Google Scholar
  84. O’Brien, P.J. (1980b) Microsomes, drug oxidation and chemical carcin-ogenesis Coon, M.J., Conney, A.H., Bilette, J.R., Gelboin,H.N., Estabrook, R.W. and O’Brien, P.J. Academic Press. O’Brien, P.J. and Little, C. (1966) Biochem. J. 101:13.Google Scholar
  85. O’Brien, P.J. and Hawco, F. (1978) Biochem. Soc. Trans. 6:1169–1174.Google Scholar
  86. Ogino, N., Ohki, S., Yamamoto, S. and Hayaishi, 0. (1978) J. Biol. Chem. 253:5061–5068.Google Scholar
  87. Ohki, S., Ogino, N., Yamamoto, S. and Hayaishi, 0. (1979) J. Biol. Chem. 254: 829–836.Google Scholar
  88. Olson, E.J. and Park, J.H. (1964) J. Biol. Chem. 239:2316.Google Scholar
  89. Oh, S.H., Ganther, H.E. and Hoekstra, W.G. (1974) Biochem. 13: 1825 1829.Google Scholar
  90. Omaze, S.T., Reddy, K.A. and Cross, E. (1978) Toxicol. Appl. Pharmacol. 43:237.Google Scholar
  91. Ormstad, K., Moldeus, P. and Orrenius, S. (1979) Biochem. Biophys. Res. Comm. 89:497–503.Google Scholar
  92. Oshino, N. and Chance, B. (1977) Biochem. J. 162:509–525.Google Scholar
  93. Pabst, M.J., Habig, W.H. and Jakoby, W.B. (1974) J. Biol. Chem. 249:7140–7150.Google Scholar
  94. Parker, D.J. and Allison, W.S. (1969) J. Biol. Chem. 244:180–189.Google Scholar
  95. Pierce, S. and Tappel, A.L. (1978) J. Biol. Chem. 244:180–189.Google Scholar
  96. Pinkus, L.M., Ketley, J.N. and Jakoby, W.B. (1977) Biochem. Pharmacol. 26:2359.Google Scholar
  97. Prohaska, J.R. (1979) Biochem. Biophys. Acta. 611:87–98.Google Scholar
  98. Prohaska, J.R., Oh, S.H., Hoekstra, W.G. and Ganther, H.E. (1977) Biochem. Biophys. Res. Comm. 74:64–71.Google Scholar
  99. Prohaska, J.R. and Ganther, H.E. (1977) Biochem. Biophys. Res. Comm. 76:437–445.Google Scholar
  100. Rahimtula, A. and O’Brien, P.J. (1973) J. Agr. Food Chem. 23:154–162.Google Scholar
  101. Riely, C., Cohen, G. and Leiberman, M. (1974) Science ( Wash. D.C. ) 183: 208–210.Google Scholar
  102. Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hoffman, D.G. and Hoekstra, W.G. (1973) Science 179: 588–590.Google Scholar
  103. Scott, M.L. (1973) in “Organic Selenium Compounds. Their Chemistry and Biology”. (D.L. Klayman and W.H. Gunther, Eds.) 629–661, Wiley Interscience, New York.Google Scholar
  104. Shamberger, R.J. (1976) Selenium in health and disease, in Proceed-ings of the Symposium on Selenium-Telburium in the Environment. Shamberger, R.J., Beaman, K.D., Corlett, C.L. and Kasten, B.L. (1978) Fed. Proc. 37:261.Google Scholar
  105. Shreve, M.R., Morrissey, P.G., O’Brien, P.J. (1979) Biochem. J. 177:761–763.Google Scholar
  106. Siegel, M.I., McConnell, R.T., and Cuatrecasas, P. (1979) Proc. Nat. Acad. Sci. 76:37–74.Google Scholar
  107. Sies, H., Bartoli, G.M., Burk, R.F. and Waydhas, C. (1978) Eur. J. Biochem. 89:113–118.CrossRefGoogle Scholar
  108. Sies, H., Gertenecker, C., Menzel, H. and Flohe, L. (1972) FEBS Letters 27: 117–175.Google Scholar
  109. Sies, H. and Summer, K.H. (1975a) Eur. J. Biochem. 57:503–512.Google Scholar
  110. Sies, H. and Grosskopf, M. (1975b) Eur. J. Biochem. 57:513–520.Google Scholar
  111. Skrede, S. and Christophersen, B.O. (1966) Biochem. J. 101: 37.Google Scholar
  112. Sree Kumar, K., Rowse, C. and Hochstein, P. (1978) Biochem. Biophys. Res. Comm. 83:587.Google Scholar
  113. Srenger, B.A., Bueger, J.A., O’Neill, F.O. and Aust, S.D. (1979) J. Biol. Chem.254:5892.Google Scholar
  114. Stonier, T. and Yang, H. (1973) Plant Physiol. 51: 391–395.CrossRefGoogle Scholar
  115. Svingen, B.A., Buege, J.A., O’Neal, F.O. and Aust, S.D. (1979) J. Biol. Chem. 254:5892–5899.Google Scholar
  116. Takagi, T. and Isemura, I. (1964) J. Biochem. 56:344–350.Google Scholar
  117. Tate, S.S., Graw, E.M. and Meister, A. (1979) Proc. Natl. Acad. Sci. 70:2211–2214.Google Scholar
  118. Tate, S.S., Graw, E.M. and Meister, A. (1979) Proc. Natl. Sci. U.S.A. 76:2715–2719.Google Scholar
  119. Utley, H.G., Bernheim, E. and Hochstein, P. (1967) Arch. Biochem. and Biophys. 118:29–32.Google Scholar
  120. Van der Ouderra, F.J., Buytenhek, M., Slikkerveer, F.J. and Van Dorp, D.A. (1979) Biochem. Biophys. Acta. 572:29–42.CrossRefGoogle Scholar
  121. Videla, L.A., Ferrandez, V., Ugarte, G., Valenzuela, A. (1980) FEBS Letters 111:No. 1 Wasseman, P.M. and Major, J.P., (1969) Biochemistry 8: 1076–1082.Google Scholar
  122. Wattenberg, L.W. (1978) Adv. Cancer Res. 26:197.CrossRefGoogle Scholar
  123. You, K., Banitez, L.V., McConochier, W.A., Allison, W.S. (1975) Biochem. Biophys Acta. 384:317–330.Google Scholar
  124. Younes, M. and Siegers, C.P. (1980) Chemical Pathology and Pharmacology 27.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Peter J. O’Brien
    • 1
  1. 1.Department of BiochemistryMemorial University of NewfoundlandSt. John’s NewfoundlandCanada

Personalised recommendations