Lipid Enzymes: Lipases, Lipoxygenases, and “Hydroperoxidases”

  • H. W. Gardner


The enzymic pathways by which glyceride lipid is converted into oxygenated fatty acids are reviewed. Sequential reactions start with hydrolysis of glycerides, and the polyunsaturated fatty acids released by lipolysis usually are oxidized enzymically to either hydroperoxides or endoperoxides. The hydroperoxide or endoperoxide fatty acids subsequently are converted into various oxygenated fatty acids and/or volatiles, many of which function as biologically important compounds.


Acid Hydroperoxide Corn Germ Fatty Acid Hydroperoxide Divinyl Ether Linoleic Acid Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acker, L., and Beutler, H.-O., 1965, Enzymatic fat hydrolysis in foodstuffs low in moisture, Fette Seifen Anstrichm., 67: 430.CrossRefGoogle Scholar
  2. Anderson, M. M., McCarty, R. E., and Zimmer, E. A., 1974, The role of galactolipids in spinach chloroplast lamellar membranes, I. Partial purification of a bean leaf galactolipid lipase and its action on subchloroplast particles, Plant Physiol., 53: 699.Google Scholar
  3. Arens, D., and Grosch, W., 1974, Non-volatile reaction products from linoleic acid. Comparison of a ground pea suspension with a purified pea lipoxygenase, Z. Lebensm. Unters.-Forsch., 156:292.Google Scholar
  4. Arens, D., Laskawy, G., and Grosch, W., 1973a, Lipoxygenase of peas. Formation of volatile aldehydes from linoleic acid, Z. Lebensm. Unters.-Forsch., 151:162.Google Scholar
  5. Arens, D., Seilmeier, W., Weber, F., Kloos, G., and Grosch, W., 1973b, Purification and properties of a carotene co-oxidizing lipoxygenase from peas, Biochim. Biophys. Acta, 327:295.Google Scholar
  6. Axelrod, B., 1974, Lipoxygenases, in: “Food Related Enzymes,” p. 324, J. R. Whitaker, ed., Adv. Chem. Ser. 136, A.C.S., Washington, D.C.Google Scholar
  7. Baldwin, J. E., Swallow, J. C., and Chan, H. W.-S., 1971, Oxygen insertion reactions. A re-investigation of the reaction of chromium pentoxide etherate with tetracyclone, J. Chem. Soc. Chem. Commun., 1407.Google Scholar
  8. Baur, C., and Grosch, W., 1977, Investigation about the taste of di-, tri-, and tetrahydroxy fatty acids, Z. Lebensm. Unters.-Forsch., 165:82.Google Scholar
  9. Baur, C., Grosch, W., Wieser, H., and Jugel, H., 1977, Enzymatic oxidation of linoleic acid: Formation of bittertasting fatty acids, Z. Lebensm. Unters.-Forsch., 164:171.Google Scholar
  10. Bild, G. S., Ramadoss, C. S., and Axelrod, B., 1977a, Effect of substrate polarity on the activity of soybean lipoxygenase isoenzymes, Lipids, 12: 732.Google Scholar
  11. Bild, G. S., Ramadoss, C. S., and Axelrod, B., 1977b, Multiple dioxygenation by lipoxygenase of lipids containing all cis1,4,7-octatriene moieties, Arch. Biochem. Biophys., 184:36.Google Scholar
  12. Bild, G. S., Bhat, S. G., Ramadoss, C. S., and Axelrod, B., 1978a, Biosynthesis of a prostaglandin by a plant enzyme, J. Biol. Chem., 253:21.Google Scholar
  13. Bild, G. S., Bhat, S. G., Ramadoss, C. S., and Axelrod, B., 1978b, Synthesis of 9(12)-oxy-8,11,15-trihydroxyeicosa-5,13-dienoic acid from arachidonic acid by soybean lipoxygenase-2, Biochem. Biophys. Res. Commun., 81:486.Google Scholar
  14. Bligny, R., and Douce, R., 1978, Calcium-dependent lipolytic acylhydrolase activity in purified plant mitochondria, Biochim. Biophys. Acta, 529:419.Google Scholar
  15. Borgeat, P., Hamberg, M., and Samuelsson, B., 1976, Transformation of arachidonic acid and homo-y-linolenic acid by rabbit polymorphonuclear leukocytes: Monohydroxy acids from novel lipoxygenases, J. Biol. Chem., 251:7816; correction, 1977, J. Biol. Chem., 252:8772.Google Scholar
  16. Brockerhoff, H., and Jensen, R. G., 1974, “Lipolytic Enzymes,” Academic Press, New York.Google Scholar
  17. Bryant, R. W., and Bailey, J. M., 1978, Isolation of new platelet lipoxygenase metabolites of arachidonic acid, Fed. Proc., 37:1317; Bryant, R. W., personal communication.Google Scholar
  18. Bryant, R. W., and Bailey, J. M., 1979, Isolation of a new lipoxygenase metabolite of arachidonic acid, 8,11,12trihydroxy-5,9,14-eicosatrienoic acid from human platelets, Prostaglandins, 17: 9.Google Scholar
  19. Chan, H. W.-S., 1971, Singlet oxygen analogs in biological systems. Coupled oxygenation of 1,3-dienes by soybean lipoxidase, J. Am. Chem. Soc., 93: 2357.CrossRefGoogle Scholar
  20. Chan, H. W.-S., 1972, Dioxygenation reactions related to lipoxygenase action, Communication at the 11th World Congress of the International Society for Fat Research, Gothenberg, Sweden.Google Scholar
  21. Chan, H. W.-S., Costaras, C. T., Prescott, F. A. A., and Swoboda, P. A. T., 1975, Specificity of lipoxygenases. Thermal isomerizations of linoleic acid hydroperoxide. A phenomenon affecting the determination of isomeric ratios, Biochim. Biophys. Acta, 398:347.Google Scholar
  22. Chan, H. W.-S., Prescott, F. A. A., and Swoboda, P. A. T., 1976, Thermal decomposition of individual positional isomers of methyl linoleate hydroperoxide: Evidence of carbon-oxygen bond scission, J. Am. Oil Chem. Soc., 53: 572.Google Scholar
  23. Chan, H. W.-S., Levett, G., and Matthew, J. A., 1978a, Thermal isomerization of methyl linoleate hydroperoxides. Evidence of molecular oxygen as a leaving group in a radical rearrangement, J. Chem. Soc. Chem. Commun., 756.Google Scholar
  24. Chan, H. W.-S., Newby, V. K., and Levett, G., 1978b, Metal ion-catalyzed oxidation of linoleic acid. Lipoxygenase-like regioselectivity of oxygenation, J. Chem. Soc. Chem. Commun., 82Google Scholar
  25. Chang, C. C., Esselman, W. J., and Clagett, C. 0., 1971, Isolation and specificity of alfalfa lipoxygenase, Lipids, 6: 100.CrossRefGoogle Scholar
  26. Christianson, D. D., and Gardner, H. W., 1975, Substitution reactions of linoleic acid hydroperoxide isomerase, Lipids, 10: 448.Google Scholar
  27. Christopher, J. P., Pistorius, E. K., Regnier, F. E., and Axelrod, B., 1972, Factors influencing the positional specificity of soybean lipoxygenase, Biochim. Biophys. Acta, 289:82.Google Scholar
  28. Cilento, G., Duran, N., Zinner, K., Vidigal, C. C. C., Faria Oliveira, O. M. M., Haun, M., Faljoni, A., Augusto, O., de Baptista, R. C., and Bechara, E. J. H., 1978, Chemienergized species in peroxidase systems, Photochem. Photobiol., 28:445.Google Scholar
  29. Groot, J. J. M. C., Veldink, G. A., Vliegenthart, J. F. G., Boldingh, J., Weyer, R., and van Gelder, B. F., 1975, Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1, Biochim. Biophys. Acta, 377:71.Google Scholar
  30. Dillard, C. J., Dumelin, E. E., and Tappel, A. L., 1977, Effect of dietary vitamin E on expiration of pentane and ethane by the rat, Lipids, 12: 109.Google Scholar
  31. Dolev, A., Rohwedder, W. K., and Dutton, H. J., 1967, Mechanism of lipoxidase reaction. I. Specificity of hydroperoxidation of linoleic acid, Lipids, 2: 28.Google Scholar
  32. Drapon, R., and Uzzan, A., 1968, Lipase and lipoxidase activity of grams, oilseeds, and fruits, Ann. Nutr. Aliment., 22:B393.Google Scholar
  33. Egmond, M. R., Vliegenthart, J. F. G., and Boldingh, J., 1972, Stereospecificity of the hydrogen abstraction at carbon atom n-8 in the oxygenation of linoleic acid from corn germs and soya beans, Biochem. Biophys. Res Commun., 48:1055.Google Scholar
  34. Egmond, M. R., Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1975, On the positional specificity of the oxygenation reaction catalyzed by soybean lipoxygenase-1, Biochim. Biophys. Acta, 409: 399.Google Scholar
  35. Eskin, N. A. M., Grossman, S., and Pinsky, A., 1977, Biochemistry of lipoxygenase in relation to food quality, CRC Crit. Rev. Food Sci. Nutr., 9:1.Google Scholar
  36. Esselman, W. J., and Clagett, C. 0., 1974, Products of a linoleic hydroperoxide-decomposing enzyme of alfalfa seed, J. Lipid Res., 15: 173.Google Scholar
  37. Esterbauer, H., and Schauenstein, E., 1977a, Isomeric trihydroxyoctadecenoic acids formed upon enzymic oxidation of linoleic acid by barley flour, Monatsh. Chem., 108:963.Google Scholar
  38. Esterbauer, H., and Schauenstein, E., 1977b, Isomeric trihydroxyoctadecenoic acids in beer: Evidence for their presence and quantitative determination, Z. Lebensm. Unters.-Forsch., 164:255.Google Scholar
  39. Evans, C. D., List, G. R., Dolev, A., McConnell, D. G., and Hoffmann, R. L., 1967, Pentane from thermal decomposition of lipoxidase-derived products, Lipids, 2: 432.Google Scholar
  40. Falardeau, P., Hamberg, M., and Samuelsson, B., 1976, Metabolism of 8,11,14-eicosatrienoic acid in human platelets, Biochim. Biophys. Acta, 441:193.Google Scholar
  41. Faria Oliveira, O. M. M., Sanioto, D. L., and Cilento, G., 1974, Singlet oxygen generation by the lipoxidase system, Biochem. Biophys. Res. Commun., 50:391.Google Scholar
  42. Finazzi-Agro, A., Giovagnoli, C., De Sole, P., Calabrese, L., Rotilio, G., and Mondovi, B., 1972, Erythrocuprein and singlet oxygen, FEBS Lett., 21: 183.CrossRefGoogle Scholar
  43. Fischer, K.-H., and Grosch, W., 1977, Cooxidation of linoleic acid to volatile compounds by lipoxygenase isoenzymes from soya beans, Z. Lebensm. Unters.-Forsch., 165:137.Google Scholar
  44. Fleming, H. P., Cobb, W. Y., Etchells, J. L., and Bell, T. A., 1968, The formation of carbonyl compounds in cucumbers, J. Food Sci., 33: 572.CrossRefGoogle Scholar
  45. Flohé, L., 1971, Review. Glutathione peroxidase: Enzymology and biological aspects, Klin. Wochenschr., 49:669.Google Scholar
  46. Führling, D., 1975, Lipoxygenase and linoleic acid hydroperoxide isomerase in barley (Hordeum vulgare), Ph.D. Thesis, University of Berlin, Germany.Google Scholar
  47. Galliard, T., 1970, The enzymic breakdown of lipids in potato tuber by phospholipid-and galactolipid-acyl hydrolase activities and by lipoxygenase, Phytochemistry, 9: 1725.Google Scholar
  48. Galliard, T., 1971, The enzymic deacylation of phospholipids and galactolipids in plants: Purification and properties of a lipolytic acyl-hydrolase from potato tubers, Biochem. J., 121: 379.Google Scholar
  49. Galliard, T., 1973, Phospholipid metabolism in photosynthetic plants, in: “Form and Function of Phospholipids,” G. B. Ansell, R. M. C. Dawson, and J. N. Hawthorne, eds., Elsevier, Amsterdam.Google Scholar
  50. Galliard, T., 1975, Degradation of plant lipids by hydrolytic and oxidative enzymes, in: “Advances in the Chemistry and Biochemistry of Plant Lipids,” T. Galliard, and E. I. Mercer, eds., Academic Press, London.Google Scholar
  51. Galliard, T., and Dennis, S., 1974, Isoenzymes of lipolytic acyl hydrolase and esterase in potato tuber, Phytochemistry, 13: 2463.Google Scholar
  52. Galliard, T., and Matthew, J. A., 1975, Enzymic reactions of fatty acid hydroperoxides in extracts of potato tuber. I. Comparison 9-D- and 13-L-hydroperoxy-octadecadienoic acids as substrates for the formation of a divinyl ether derivative, Biochim. Biophys. Acta, 398:1.Google Scholar
  53. Galliard, T., and Matthew, J. A., 1977, Lipoxygenase-mediated cleavage of fatty acids to carbonyl fragments in tomato fruits, Phytochemistry, 16: 339.Google Scholar
  54. Galliard, T., and Phillips, D. R., 1971, Lipoxygenase from potato tubers: Partial purification and properties of an enzyme that specifically oxygenates the 9-position of linoleic acid, Biochem. J., 124: 431.Google Scholar
  55. Galliard, T., and Phillips, D. R., 1972, The enzymic conversion of linoleic acid into 9-(nona-l’,3’-dienoxy)non-8-enoic acid, a novel unsaturated éther derivative isolated from homogenates of Solanum tuberosum tubers, Biochem. J., 129:743.Google Scholar
  56. Galliard, T., and Phillips, D. R., 1976, The enzymic cleavage of linoleic acid to Cg carbonyl fragments in extracts of cucumber (Cucumis sativus) fruit and the possible role of lipoxygenase, Biochim. Biophys. Acta, 431:278.Google Scholar
  57. Galliard, T., Phillips, D. R., and Frost, D. J., 1973, Novel divinyl ether fatty acids in extracts of Solanum tuberosum, Chem. Phys. Lipids, 11:173.Google Scholar
  58. Galliard, T., Wardale, D. A., and Matthew, J. A., 1974, The enzymic and non-enzymic degradation of colneleic acid, an unsaturated fatty acid ether intermediate in the lipoxygenase pathway of linoleic acid oxidation in potato (Solanum tuberosum) tubers, Biochem. J., 138:23.Google Scholar
  59. Galliard, T., Phillips, D. R., and Matthew, J. A., 1975, Enzymic reactions of fatty acid hydroperoxides in extracts of potato tuber. II. Conversion of 9- and 13-hydroperoxyoctadecadienoic acids to monohydroxydienoic acid, epoxyhydroxy-and trihydroxymonoenoic acid derivatives, Biochim. Biophys. Acta, 409:157.Google Scholar
  60. Galliard, T., Matthew, J. A., Fishwick, M. J., and Wright, A. J., 1976a, The enzymic degradation of lipids resulting from physical disruption of cucumber (Cucumis sativus) fruit, Phytochemistry, 15: 1647.Google Scholar
  61. Galliard, T., Phillips, D. R., and Reynolds, J., 1976b, The formation of cis-3-nonenal, trans-2-nonenal, and hexanal from linoleic acid hydroperoxide isomers by a hydroperoxide cleavage enzyme system in cucumber (Cucumis sativus) fruits, Biochim. Biophys. Acta, 441:181.Google Scholar
  62. Galliard, T., Matthew, J. A., Wright, A. J., and Fishwick, M. J., 1977, The enzymic breakdown of lipids to volatile and nonvolatile carbonyl fragments in disrupted tomato fruits, J. Sci. Food Agric., 28:863.Google Scholar
  63. Galpin, J. R., Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1978, The interaction of nitric oxide with soybean lipoxygenase-l. Biochim. Biophys. Acta, 536:356.Google Scholar
  64. Gardner, H. W., 1970, Sequential enzymes of linoleic acid oxidation in corn germ: Lipoxygenase and linoleate hydroperoxide isomerase, J. Lipid Res., 11:311.Google Scholar
  65. Gardner, H. W., 1975, Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with nonenzymic, J. Agric. Food Chem., 23:129.Google Scholar
  66. Gardner, H. W., 1978, Further studies of a model for lipid hydroperoxide degradation: Stereo-and regio-selectivity of the decomposition, Communication at the 14th World Congress, International Society for Fat Research, Brighton, England, September 17–22.Google Scholar
  67. Gardner, H. W., 1979a, Stereospecificity of linoleic acid hydroperoxide isomerase from corn germ, Lipids, 14:208. Gardner, H. W., 1979b, Lipid hydroperoxide reactivity with proteins and amino acids: A review, J. Agric. Food Chem., 27: 220.Google Scholar
  68. Gardner, H. W., and Kleiman, R., 1977, A soy extract catalyzes formation of 9-oxo-trans-12,13-epoxy-trans-l0-octadecenoic acid from 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid, Lipids, 12: 941.Google Scholar
  69. Gardner, H. W., and Kleiman, R., 1979, Lack of regioselectivity in formation of oxohydroxyoctadecenoic acids from the 9-er 13hydroperoxide of linoleic acid, Lipids, 14: 848.Google Scholar
  70. Gardner, H. W., and Sessa, D. J., 1977, Degradation of fatty acid hydroperoxide by cereals and a legume: A comparison, Ann. Technol. Agric., 26:151.Google Scholar
  71. Gardner, H. W., and Weisleder, D., 1970, Lipoxygenase from Zea mays: 9D-hydroperoxy-trans-10,cis-12-octadecadienoic acid from linoleic acid, Lipids, 5: 678.Google Scholar
  72. Gardner, H. W., Eskins, K., Grams, G. W., and Inglett, G. E., 1972, Radical addition of linoleic hydroperoxides to atocopherol or the analogous hydroxychroman, Lipids, 7: 324.Google Scholar
  73. Gardner, H. W., Christianson, D. D., and Kleiman, R., 1973, Dimorphotheca sinuata lipoxygenase: Formation of 13Lhydroperoxy-cis-9,trans-11-octadecadienoic acid from linoleic acid, Lipids, 8: 271.Google Scholar
  74. Gardner, H. W., Kleiman, R., and Weisleder, D., 1974, Homolytic decomposition of linoleic acid hydroperoxide: Identification of fatty acid products, Lipids, 9: 696.Google Scholar
  75. Gardner, H. W., Kleiman, R., Christianson, D. D., and Weisleder, D., 1975, Positional specificity of y-ketol formation from linoleic acid hydroperoxides by a corn germ enzyme, Lipids, 10: 602.Google Scholar
  76. Gardner, H. W., Kleiman, R., Weisleder, D., and Inglett, G. E., 1977, Cysteine adds to lipid hydroperoxide, Lipids 12: 655.Google Scholar
  77. Gardner, H. W., Weisleder, D., and Kleiman, R., 1978, Formation of trans-12,13-epoxy-9-hydroperoxy-trans-l0-octadecenoic acid from 13-L-hydroperoxy-cis-9,trans-1l-octadecadienoic acid catalyzed by either a soybean extract or cysteine-FeCl3, Lipids, 13: 246.Google Scholar
  78. Garssen, G. J., Vliegenthart, J. F. G., and Boldingh, J., 1971, An anaerobic reaction between lipoxygenase, linoleic acid, and its hydroperoxides, Biochem. J., 122:327.Google Scholar
  79. Garssen, G. J., Vliegenthart, J. F. G., and Boldingh, J., 1972, The origin and structures of dimeric fatty acids from the anaerobic reaction between soyabean lipoxygenase, linoleic acid, and its hydroperoxide, Biochem. J., 130: 435.Google Scholar
  80. Garssen, G. J., Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1976, The formation of threo-ll-hydroxy-trans12:13-epoxy-9-cis-octadecenoic acid by enzymic isomerization of 13-L-hydroperoxy-9-cis,ll-trans-octadecadienoic acid by soybean lipoxygenase-1, Eur. J. Biochem., 62:33.Google Scholar
  81. Gerritsen, M., Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1976, Formation of a-and y-ketols from 180-labelled linoleic acid hydroperoxides by corn germ hydroperoxide isomerase, FEBS Lett., 67: 149.Google Scholar
  82. Gibian, M. J., and Galaway, R. A., 1977, Chemical aspects of lipoxygenase reactions, in: “Bioorganic Chemistry,” Vol. 1, Van Tamelen, ed., Academic Press, New York.Google Scholar
  83. Goda, K., Kimura, T., Thayer, A. L., Kees, K., and Schaap, A. P., 1974, Singlet molecular oxygen in biological systems: Non-quenching of singlet oxygen-mediated chemiluminescence by superoxide dismutase, Biochem. Biophys. Res. Commun. 58:660.Google Scholar
  84. Graveland, A., 1970a, Enzymatic oxidations of linoleic acid and glycerol-l-monolinoleate in doughs and flour-water suspensions, J. Am. Oil Chem. Soc. 47:352.Google Scholar
  85. Graveland, A., 1970b, Modification of the course of the reaction between wheat flour lipoxygenase and linoleic acid due to adsorption of lipoxygenase on glutenin, Biochem. Biophys. Res. Commun. 41:427.Google Scholar
  86. Graveland, A., 1973a, Enzymatic oxidation of linolenic acid in aqueous wheat flour suspensions, Lipids, 8: 606.Google Scholar
  87. Graveland, A., 1973b, Analysis of lipoxygenase nonvolatile reaction products of linoleic acid in aqueous cereal suspensions by urea extraction and gas chromatography, Lipids 8: 599.Google Scholar
  88. Graveland, A., 1973c, Wheat lipids and their enzymatic oxidation, Getreide, Mehl Brot, 27:316.Google Scholar
  89. Graveland, A., Pesman, L., and van Erde, P., 1972, Enzymatic oxidation of linoleic acid in barley suspensions, Tech. Q. Master Brew. Assoc. Am., 9:98.Google Scholar
  90. Grosch, W., 1968a, Linoleic and linolenic acids as substrate for enzymatic formation of volatile carbonyl compounds in pea, Z. Lebensm. Unters.-Forsch., 137:216.Google Scholar
  91. Grosch, W., 1968b, Reaction path of the enzymatic formation of volatile aldehydes in pea (Pisum sativum), Z. Lebensm. Unters.-Forsch., 139:1.Google Scholar
  92. Grosch, W., 1976, Breakdown of linoleic acid hydroperoxides. Formation of volatile carbonyl compounds, Z. Lebensm. Unters.-Forsch., 139:371.Google Scholar
  93. Grosch, W., 1977, Breakdown of linoleic and linolenic acid hydro-peroxides in the presence of ascorbic acid. Analysis of the volatile aldehydes, Z. Lebensm. Unters.-Forsch., 163:4.Google Scholar
  94. Grosch, W., and Laskawy, G., 1975, Differences in the amount and range of volatile carbonyl compounds formed by lipoxygenase isoenzymes from soybeans, J. Agric. Food Chem., 23:791.Google Scholar
  95. Grosch, W., and Schwarz, J. M., 1971, Linoleic and linolenic acid as precursors of the cucumber flavor, Lipids, 6: 351.Google Scholar
  96. Grosch, W., and Schwencke, D., 1969, Lipoxygenase of soybean: Volatile aldehyde and alcohol from linoleic acid, Lebensm.-Wiss. Technol., 2:109.Google Scholar
  97. Grosch, W., Schwarz, J., and Schormüller, J., 1971, Investigations on an enzymatic degradation of linoleic acid hydroperoxides by protein fractions from wheat, beans, and linseeds, Fette Seifen Anstrichm., 73: 433.Google Scholar
  98. Grosch, W., Höxer, B., Stan, H.-J., and Schormüller, J., 1972, Preparation of a pure lipoxygenase/GLO complex from soybeans and its fragmentation into subunits, Fette Seifen Anstrichm., 74: 16.CrossRefGoogle Scholar
  99. Grosch, W., Laskawy, G., and Fischer, K. H., 1974, Oxidation of linolenic acid in the presence of hemoglobin, lipoxygenase, or by singlet oxygen. Identification of the volatile carbonyl compounds, Lebensm.-Wiss. Technol., 7:335.Google Scholar
  100. Grosch, W., Laskawy, G., and Weber, F., 1976, Formation of volatile carbonyl compounds and cooxidation of 8-carotene by lipoxygenase from wheat, potato, flax, and beans, J. Agric. Food Chem., 24:456.Google Scholar
  101. Grosch, W., Laskawy, G., and Fischer, K.-H., 1977a, Positional specificity of the peroxidation of linoleic and linolenic acid by homogenates from apples and pears, Z. Lebensm. Unters.-Forsch., 163:203.Google Scholar
  102. Grosch, W., Laskawy, G., and Kaiser, K.-P., 1977b, Co-oxidation of 8-carotene and canthaxanthine by purified lipoxygenases from soya beans, Z. Lebensm. Unters.-Forsch., 165:77.Google Scholar
  103. Grosch, W., Tsoukalas, B., and Schieberle, P., 1978, Breakdown of linoleic acid hydroperoxides in the presence of radicals, Communication at the 14th World Congress, International Society for Fat Research, Brighton, England, September 17–22.Google Scholar
  104. Grossman, S., Ben Aziz, A., Budowski, P., Ascarelli, I., Gertler, A., Birk, Y., and Bondi, A., 1969, Enzymic oxidation of carotene and linoleate by alfalfa: Extraction and separation of active fractions, Phytochemistry, 8: 2287.Google Scholar
  105. Grossman, S., Shahin, I., and Sredni, B., 1979, Rat testis lipoxygenase-like enzyme: Characterization of products from linoleic acid, Biochim. Biophys. Acta, 572:293.Google Scholar
  106. Ramberg, M., 1971, Steric analysis of hydroperoxides formed by lipoxygenase oxygenation of linoleic acid, Anal. Biochem., 43:515.Google Scholar
  107. Hamberg, M., 1975, Decomposition of unsaturated fatty acid hydroperoxides by hemoglobin: Structures of the major products of 13L-hydroperoxy-9,11-octadecadienoic acid, Lipids, 10: 87.Google Scholar
  108. Hamberg, M., and Samuelsson, B., 1965, Specificity of the lipoxidase catalyzed oxygenation of unsaturated fatty acids, Biochem. Biophys. Res. Commun., 21:531.Google Scholar
  109. Hamberg, M., and Samuelsson, B., 1967a, On the specificity of the oxygenation of unsaturated fatty acids catalyzed by soybean lipoxidase, J. Biol. Chem., 242:5329.Google Scholar
  110. Hamberg, M., and Samuelsson, B., 1967b, Oxygenation of unsaturated fatty acid by the vesicular gland of sheep, J. Biol. Chem., 242:5344.Google Scholar
  111. Ramberg, M., and Samuelsson, B., 1974, Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets, Proc. Natl. Acad. Sci., 71:3400.Google Scholar
  112. Ramberg, M., Svensson, J., Wakabayashi, T., and Samuelsson, B., 1974, Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation, Proc. Natl. Acad. Sci., 71: 345.Google Scholar
  113. Hasson, E. P., and Laties, G. G., 1976, Separation and characterization of potato lipid acylhydrolases, Plant Physiol., 57: 142.Google Scholar
  114. Hatanaka, A., and Harada, T., 1973, Formation of cis-3-hexenal, trans-2-hexenal and cis-3-hexenol in macerated Thea sinensis leaves, Phytochemistry, 12: 2341.Google Scholar
  115. Hatanaka, A., Kajiwara, T., and Harada, T., 1975, Biosynthetic pathway of cucumber alcohol: trans-2,cis-6-Nonadienol via cis-3,cis-6-nonadienal, Phytochemistry, 14: 2589.Google Scholar
  116. Hatanaka, A., Kajiwara, T., and Sekiya, J., 1976, Biosynthesis of trans-2-hexenal in chloroplasts from Thea sinensis, Phytochemistry, 15:1125.Google Scholar
  117. Hatanaka, A., Kajiwara, T., Sekiya, J., and Kido, Y., 1977a, Formation of 12-oxo-trans-l0-dodecenoic acid in chloroplasts from Thea sinensis leaves, Phytochemistry, 16: 1828.Google Scholar
  118. Hatanaka, A., Sekiya, J., and Kajiwara, T., 1977b, Enzyme system catalyzing formation of cis-3-hexenal and n-hexanal from linolenic and linoleic acids in Japanese silver (Farfugium japonicum Kitamura) leaves, Plant Cell Physiol., 18: 107.Google Scholar
  119. Hatanaka, A., Sekiya, J., and Kajiwara, T., 1978, Distribution of an enzyme system producing cis-3-hexenal and n-hexanal from linolenic and linoleic acids in some plants, Phytochemistry, 17: 869.Google Scholar
  120. Hatanaka, A., Kajiwara, T., Sekiya, J., and Fujimura, K., 1979, Participation of 13-hydroperoxide in the formation of nhexanal from linoleic acid in tea chloroplasts, Agric. Biol. Chem., 43:175.Google Scholar
  121. Heimann, W., and Dresen, P., 1973, About the enzymatic hydroperoxide degradation in cereals. Enzyme characterization and reaction products, Hely. Chim. Acta, 56:463.Google Scholar
  122. Heimann, W., and Franzen, K.-H., 1978, Development of volatile compounds from radicals arising during intermediate steps of the lipoxygenase-reaction, Z. Lebensm. Unters.-Forsch., 167:78.Google Scholar
  123. Heimann, W., and Klaiber, V., 1977a, Hydroperoxide degradation by oat isomerase. Investigation of the reaction mechanism, Z. Lebensm. Unters.-Forsch., 165:140.Google Scholar
  124. Heimann, W., and Klaiber, V., 1977b, On the lipoperoxidaseisomerase-system from oat. Experiments for enzyme separation, Z. Lebensm. Unters.-Forsch., 165:144.Google Scholar
  125. Heimann, W., and Klaiber, V., 1977c, On lipoxygenase and enzymes which decompose linoleic acid hydroperoxides in rye, Z. Lebensm. Unters.-Forsch., 165:131.Google Scholar
  126. Heimann, W., and Schreier, P., 1971, About lipoxygenase“lipoperoxidase”-system in cereals: I. Investigation of the reaction product, Hely. Chim. Acta, 54:2794.Google Scholar
  127. Heimann, W., and Timm, U., 19//a, On characterization of lipoxy- genase from barley, Z. Lebensm. Unters.-Forsch., 165:5.Google Scholar
  128. Heimann, W., and Timm, U., 1977b, Enzymatic breakdown of linoleic acid hydroperoxides to volatile carbonyl compounds by isomerase from barley, Z. Lebensm. Unters.-Forsch., 165:7.Google Scholar
  129. Heimann, W., Reinartz, F., and Schreier, P., 1972, About lipoxygenase-“lipoperoxidase”-system in cereals: III. On the kinetics of enzymatic breakdown of linoleic acid hydro-peroxides, Helv. Chim. Acta, 55:2257.Google Scholar
  130. Heimann, W., Dresen, P., and Klaiber, V., 1973a, Formation and decomposition of linoleic acid hydroperoxides in cereals: Quantitative determination of the reaction products, Z. Lebensm. Unters.-Forsch., 153:1.Google Scholar
  131. Heimann, W., Dresen, P., and Schreier, P., 1973b, Lipoxygenase“lipoperoxidase”-system in cereals isolation of two protein complexes with lipoxygenase and linoleic acid hydroperoxide activity from oats and soybeans, Z. Lebensm. Unters.-Forsch., 152:147.Google Scholar
  132. Heimann, W., Franzen, K.-H., and Rapp, A., 1975, About the formation of volatile products during lipoxygenase-linoleic acid reaction, Z. Lebensm. Unters.-Forsch., 158:65.Google Scholar
  133. Heimann, W., Franzen, K. H., Rapp, A., and Ullemeyer, H., 1976, Studies on the development of volatile substances during the lipoxygenase-linoleic acid reaction, Z. Lebensm. Unters.-Forsch., 162:109.Google Scholar
  134. Hemler, M., Crawford, C. G., and Lands, W. E. M., 1978, Lipoxygenation activity of purified prostaglandin-forming cyclooxygenase, Biochemistry, 17: 1772.Google Scholar
  135. Holman, R. T., Egwim, P. 0., and Christie, W. W., 1969, Substrate specificity of soybean lipoxidase, J. Biol. Chem., 244: 1149.Google Scholar
  136. Hurt, G. B., and Axelrod, B., 1977, Characterization of two isoenzymes of lipoxygenase from bush beans, Plant Physiol., 59: 695.Google Scholar
  137. Ikediobi, C. 0., 1977, Bleaching of dichlorophenolindophenol by a coupled oxidation with linoleate catalyzed by soybean lipoxygenase, Agric. Biol. Chem., 41: 2369.CrossRefGoogle Scholar
  138. Ikediobi, C. 0., and Snyder, H. E., 1977, Cooxidation of (3-carotene by an isoenzyme of soybean lipoxygenase, J. Agric. Food Chem., 25: 124.CrossRefGoogle Scholar
  139. Imamura, M., and Shimizu, S., 1974, Metabolism of chlorophyll in higher plants. IV. Relationship between fatty acid oxidation and chlorophyll bleaching in plant extracts, Plant Cell Physiol., 15: 187.Google Scholar
  140. Ishimaru, A., and Yamazaki, I., 1977, Hydroperoxide-dependent hydroxylation involving “H202-reducible hemoprotein” in microsomes of pea seeds, J. Biol. Chem., 252:6118.Google Scholar
  141. Jadhav, S., Singh, B., and Salunkhe, D. K., 1972, Metabolism of unsaturated fatty acids in tomato fruit: linoleic and linolenic acid as precursors of hexanal, Plant Cell Physiol., 13: 449.Google Scholar
  142. Johns, E. B., Pattee, H. E., and Singleton, J. A., 1973, Lipoxygenase-mediated pentane production: Characterization of the system, J. Agric. Food Chem., 21:570.Google Scholar
  143. Jones, R. L., Kerry, P. J., Poyser, N. L., Walker, I. C., and Wilson, N. H., 1978, The identification of trihydroxyeicosatrienoic acids as products from the incubation of arachidonic acid with washed blood platelets, Prostaglandins, 16: 583.Google Scholar
  144. Kalbrener, J. E., Warner, K., and Eldridge, A. C., 1974, Flavors of linoleic and linolenic acid hydroperoxides and their decomposition products, Cereal Chem., 51: 406.Google Scholar
  145. Kanner, F., Mendel, H., and Budowski, P., 1977, Carotene oxidizing factors in red pepper fruits (Capsicum annum L.): Peroxidase activity, J. Food Sci., 42: 1549.CrossRefGoogle Scholar
  146. Kazeniac, S. J., and Hall, R. M., 1970, Flavor chemistry of tomato volatiles, J. Food Sci., 35:519.Google Scholar
  147. Kharasch, N., and Fried, J., ed., 1977, “Biochemical Aspects of Prostaglandins and Thromboxanes,” Academic Press, New York.Google Scholar
  148. Kies, M. W., Haining, J. L., Pistorius, E., Schroeder, D. H., and Axelrod, B., 1969, On the question of the identity of soybean “lipoxidase” and carotene oxidase, Biochem. Biophys. Res. Commun., 36:312.Google Scholar
  149. Kim, I.-S., and Grosch, W., 1978, Lipoxygenases from pears, strawberries, and gooseberries: Partial purification and properties, Z. Lebensm. Unters.-Forsch., 167:324.Google Scholar
  150. Kim, I.-S., and Grosch, W., 1979, Partial purification of a lipoxygenase from apples, J. Agric. Food Chem., 27:243.Google Scholar
  151. Leu, K., 1974a, Formation of isomeric hydroperoxides from linoleic acid by lipoxygenase, Lebensm.-Wiss. Technol., 7:82.Google Scholar
  152. Leu, K., 1974b, Analysis of volatile compounds produced in linoleic acid oxidation catalyzed by lipoxygenase from peas, soybeans, and corn germs, Lebensm.-Wiss. Technol., 7:98.Google Scholar
  153. Major, R. T., and Thomas, M., 1972, Formation of 2-hexenal from linolenic acid by macerated Ginko leaves, Phytochemistry, 11: 611.Google Scholar
  154. Major, R. T., Roth, J. S., and Kuenkler, A. S., 1974, Enzymic oxidation of linolenate by Ginko leaves: Fractionation and characterization of active fractions, Phytochemistry, 13: 1083.Google Scholar
  155. Marcus, A. J., 1978, Role of lipids in platelet function with particular reference to arachidonic acid pathway, J. Lipid Res., 19:793.Google Scholar
  156. Matsuda, Y., Beppu, T., and Arima, K., 1978, Crystallization and positional specificity of hydroperoxidation of Fusarium lipoxygenase, Biochim. Biophys. Acta, 530:439.Google Scholar
  157. Matthew, J. A., and Galliard, T., 1978, Enzymic formation of carbonyls from linoleic acid in leaves of Phaseolus vulgaris, Phytochemistry, 17:1043.Google Scholar
  158. Matthew, J. A., Chan, H. W.-S., and Galliard, T., 1977, A simple method for the preparation of pure 9-D-hydroperoxide of linoleic acid and methyl linoleate based on the positional specificity of lipoxygenase in tomato fruit, Lipids, 12: 324.Google Scholar
  159. Michelson, A. M., 1974, Is singlet oxygen a substrate for superoxide dismutase? No, FEBS Lett., 44: 97.CrossRefGoogle Scholar
  160. Moll, C., Biermann, U., and Grosch, W., 1979, Occurrence and formation of bitter-tasting trihydroxy fatty acids in soybeans, J. Agric. Food Chem., 27:239.Google Scholar
  161. Morrison, W. R., 1978, Cereal lipids, in: “Advances in Cereal Science and Technology,” Vol. II, Y. Pomeranz, ed., A.A.C.C., St. Paul, MN.Google Scholar
  162. Nakano, M., and Sugioka, K., 1977, Mechanism of chemiluminescence from the linoleate-lipoxygenase system, Arch. Biochem. Biophys., 181:371.Google Scholar
  163. Nilsson, R., and Kearns, D. R., 1974, Role of singlet oxygen in some chemiluminescence and enzyme oxidation reactions, J. Phys. Chem., 78:1681.Google Scholar
  164. Nugteren, D. H., 1975, Arachidonate lipoxygenase in blood platelets, Biochim. Biophys. Acta, 380:299.Google Scholar
  165. Nye, W., and Spoehr, H. A., 1943, The isolation of hexenal from leaves, Arch. Biochem. Biophys., 2:23.Google Scholar
  166. O’Brien, P. J., 1969, Intracellular mechanisms for the decomposition of a lipid peroxide. I. Decomposition of a lipid peroxide by metal ions, heme compounds, and nucleophiles, Can. J. Biochem., 47:485.Google Scholar
  167. Ory, R. L., Yatsu, L. Y., and Kircher, H. W., 1968, Association of lipase activity with the spherosomes of Ricinus communis, Arch. Biochem. Biophys., 264:255.Google Scholar
  168. Pattee, H. E., and Singleton, J. A., 1979, Evidence of enzymicGoogle Scholar
  169. production of 9-hydroperoxy-trans-l0,cis-l2-octadecadienoic acid by peanut lipoxygenase, J. Agric. Food Chem., 27:216.Google Scholar
  170. Pattee, H. E., Singleton, J. A., and Johns, E. B., 1974, Pentane production by peanut lipoxygenase, Lipids, 9: 302.Google Scholar
  171. Phillips, D. R., and Galliard, T., 1978, Flavour biogenesis.Partial purification and properties of a fatty acid hydro-peroxide cleaving enzyme from fruits of cucumber, Phytochemistry, 17: 355.Google Scholar
  172. Phillips, D. R., Matthew, J. A., Reynolds, J., and Fenwick, G. R., 1979, Partial purification and properties of a cis-3:trans2-enal isomerase from cucumber fruit, Phytochemistry, 18: 401.Google Scholar
  173. Pinsky, A., Grossman, S., and Trop, M., 1971, Lipoxygenase content and antioxidant activity of some fruits and vegetables, J. Food Sci., 36: 571.CrossRefGoogle Scholar
  174. Porter, N. A., and Funk, M. 0., 1975, Peroxy radical cyclization as a model for prostaglandin biosynthesis, J. Org. Chem., 40: 3614.CrossRefGoogle Scholar
  175. Porter, N. A., Funk, M. O., Gilmore, D. W., Isaac, S. R., Menzel, D. B., Nixon, J. R., and Roycroft, J. H., 1977, Model studies of prostaglandin biosynthesis and pharmacological properties of cyclic peroxides, in: “Biochemical Aspects of Prostaglandins and Thromboxanes,” p. 39, N. Kharasch, and J. Fried, eds., Academic Press, New York.Google Scholar
  176. Pryor, W. A., and Stanley, J. P., 1975, A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymic production of prostaglandin endoperoxides during autoxidation, J. Org. Chem., 40:3615.Google Scholar
  177. Ramadoss, C. S., Pistorius, E. K., and Axelrod, B., 1978, Coupled oxidation of carotene by lipoxygenase requires two isoenzymes, Arch. Biochem. Biophys., 190:549.Google Scholar
  178. Ramwell, P. W., ed., 1973, 1974, 1977, “The Prostaglandins,” Vol. 1, 2, 3, Plenum Press, New York.Google Scholar
  179. Rhee, K. S., and Watts, B. M., 1966, Evaluation of lipid oxidation in plant tissues, J. Food Sci., 31:664.Google Scholar
  180. Richter, C., Wendel, A., Weser, U., and Azzi, A., 1975, Inhibition by superoxide dismutase of linoleic acid peroxidation induced by lipoxidase, FEBS Lett., 51: 300.Google Scholar
  181. Roza, M., and Francke, A., 1973, Product specificity of soyabean lipoxygenases, Biochim. Biophys. Acta, 316:76.Google Scholar
  182. Roza, M., and Francke, A., 1978, Cyclic peroxides from a soya lipoxygenase-catalyzed oxygenation of methyl linolenate, Biochim. Biophys. Acta, 528:119.Google Scholar
  183. Saijyo, R., and Takeo, T., 1972, The importance of linoleic acid and linolenic acid as precursors of hexanal and trans-2-hexenal in black tea, Plant Cell Physiol., 13: 991.Google Scholar
  184. Samuelsson, B., and Paoletti, R., ed., 1976, “Advances in Prostaglandin and Thromboxane Research,” Vol. 1 and 2, Raven Press, New York.Google Scholar
  185. Samuelsson, B., Goldyne, M., Granstrim, E., Hamberg, M., Hammarstrim, S., and Malmsten, C., 1978, Prostaglandins and thromboxanes, Ann. Rev. Biochem., 47:997.Google Scholar
  186. Sanders, T. H., Pattee, H. E., and Singleton, J. A., 1975, Aerobic pentane production by soybean lipoxygenase isozymes, Lipids, 10: 568.Google Scholar
  187. Sastry, P. S., and Kates, M., 1964, Hydrolysis of monogalactosyl and digalactosyl diglycerides by specific enzymes in runner-bean leaves, Biochemistry, 3: 1280.Google Scholar
  188. Schaap, A. P., Thayer, A. L., Faler, G. R., Goda, L., and Kimura, T., 1974, Singlet molecular oxygen and superoxide dismutase, J. Am. Chem. Soc., 96:4025.Google Scholar
  189. Schormiller, J., Weber, J., Hixer, B., and Grosch, W., 1968, Guaiacol-linoleic acid hydroperoxide-oxidoreductase in soybean. Experiment on the separation of enzymes of H202peroxidase and lipoxygenase, Z. Lebensm. Unters.-Forsch., 139:357.Google Scholar
  190. Schreier, P., and Heimann, W., 1971, About lipoxygenase“lipoperoxidase”-system in cereals: II. Characterization of hydroperoxide-degrading enzymes, Helv. Chim. Acta, 54:2803.Google Scholar
  191. Sekiya, J., and Hatanaka, A., 1977, cis-3-Hexenal and n-hexanal formation from linolenic and linoleic acids in alfalfa cells cultured in vitro, Plant Sci. Lett., 10:165.Google Scholar
  192. Sekiya, J., Numa, S., Kajiwara, T., and Hatanaka, A., 1976, Biosynthesis of leaf alcohol. Formation of 3Z-hexenal from linolenic acid in chloroplasts of Thea sinensis leaves, Agric. Biol. Chem., 40:185.Google Scholar
  193. Sekiya, J., Kajiwara, T., and Hatanaka, A., 1978, Effects of inhibitors on the enzyme system producing C6-aldehydes from C18-unsaturated fatty acids in chloroplasts of Japanese silver (Farfugium japonicum) leaves, Plant Cell Physiol., 19: 553.Google Scholar
  194. Sessa, D. J., 1979, Biochemical aspects of lipid-derived flavors in legumes, J. Agric. Food Chem., 27:234.Google Scholar
  195. Sessa, D. J., Gardner, H. W., Kleiman, R., and Weisleder, D., 1977, Oxygenated fatty acid constituents of soybean phosphatidylcholines, Lipids, 12: 613.Google Scholar
  196. Shepard, D. V., and Pitt, D., 1976, Purification and physiological properties of two lipolytic enzymes of Solanum tuberosum, Phytochemistry, 15:1471.Google Scholar
  197. Singleton, J. A., Pattee, H. E., and Sanders, T. H., 1976, Production of flavor volatiles in enzyme and substrate enriched peanut homogenates, J. Food Sci., 41:148.Google Scholar
  198. Singleton, J. A., Pattee, H. E., and Nelson, M. S., 1978, Factors affecting product specificity of peanut lipoxygenase, J. Am. Oil Chem. Soc., 55: 387.Google Scholar
  199. Stone, E. J., Hall, R. M., and Kazeniac, S. J., 1975, Formation of aldehydes and alcohols in tomato fruit from U-14C-labelled linolenic and linoleic acids, J. Food Sci., 40: 1138.CrossRefGoogle Scholar
  200. Streckert, G., and Stan, H.-J., 1975, Conversion of linoleic acid hydroperoxide by soybean lipoxygenase in the presence of guaiacol: Identification of the reaction products, Lipids, 10: 847.Google Scholar
  201. Swoboda, P. A. T., and Peers, K. E., 1978, trans-4,5-Epoxyhept-trans-2-enal. The major volatile compound formed by the copper and a-tocopherol induced oxidation of butterfat, J. Sci. Food Agric., 29:803.Google Scholar
  202. Tappel, A. L., 1963, Lipoxidase, in: “The Enzymes,” Vol. 8, 2nd edition, P. D. Boyer, H. Lardy, and K. Myrbäck, eds., Academic Press, New York.Google Scholar
  203. Teng, J. I., and Smith, L. L., 1973, Sterol metabolism. XXIV. On the unlikely participation of singlet molecular oxygen in several enzyme oxygenations, J. Am. Chem. Soc., 95: 4060.CrossRefGoogle Scholar
  204. Theimer, R. R., and Rosnitschek, I., 1978, Development and intracellular localization of lipase activity in rapeseed (Brassica napus L.) cotyledons, Planta, 139: 249.Google Scholar
  205. Tremolieres, A., and Dubacq, J. P., 1976, Formation of a A8dodecenoic dibasic acid from linoleic acid by young pea leaves, Phytochemistry, 15: 1123.Google Scholar
  206. Tressl, R., and Drawert, F., 1973, Biogenesis of banana volatiles, J. Agric. Food Chem., 21:560.Google Scholar
  207. Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1970a, The enzymic conversion of linoleic acid hydroperoxide by flax-seed hydroperoxide isomerase, Biochem. J., 120: 55.Google Scholar
  208. Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1970b, Oxygen transfer in the enzymatic conversion of 180-labelled linoleic acid hydroperoxide into the 12-keto-l3-hydroxyoctadeccis-9-enoic acid, FEBS Lett., 7: 188.Google Scholar
  209. Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1970c, Proof of the enzymatic formation of 9-hydroperoxy-l0-trans,12cis-octadecadienoic acid by soya lipoxygenase, Biochim. Biophys. Acta, 202:198.Google Scholar
  210. Veldink, G. A., Garssen, G. J., Vliegenthart, J. F. G., and Boldingh, J., 1972, Positional specificity of corn germ lipoxygenase as a function of pH, Biochem. Biophys. Res. Commun., 47:22.Google Scholar
  211. Veldink, G. A., Garssen, G. J., Slappendel, S., Vliegenthart, J. F. G., and Boldingh, J., 1977a, Chemiluminescence during lipoxygenase-catalyzed oxygenation of linoleic acid, Biochem. Biophys. Res. Commun., 78:424.Google Scholar
  212. Veldink, G. A., Vliegenthart, J. F. G., and Boldingh, J., 1977b, Plant lipoxygenases, Prog. Chem. Fats Other Lipids, 15:131.Google Scholar
  213. Verhagen, J., Bouman, A. A., Vliegenthart, J. F. G., and Boldingh, J., 1977, Conversion of 9-D- and 13-L-hydroperoxylinoleic acids by soybean lipoxygenase-1 under anaerobic conditions, Biochim. Biophys. Acta, 486:114.Google Scholar
  214. Vick, B. A., and Zimmerman, D. C., 1976, Lipoxygenase and hydroperoxide lyase in germinating watermelon seedlings, Plant Physiol., 57: 780.Google Scholar
  215. Vioque, E., and Holman, R. T., 1962, Characterization of the ketodienes formed in the oxidation of linoleate by lipoxidase, Arch. Biochem. Biophys., 99:522.Google Scholar
  216. Vioque, E., and Maza, M. P., 1971, Sodium linoleate oxidation by the enzymatic extracts of some leguminosae, Grasas Aceites (Seville), 22: 22.Google Scholar
  217. Vliegenthart, J. F. G., 1978, Plenary lecture at 14th World Congress of the International Society for Fat Research, Brighton, England, Sept. 17–22.Google Scholar
  218. Wardale, D. A., and Galliard, T., 1975, Subcellular localization of lipoxygenase and lipolytic acyl hydrolase in plants, Phytochemistry, 14: 2323.Google Scholar
  219. Wardale, D. A., and Galliard, T., 1977, Further studies on the subcellular localization of lipid-degrading enzymes, Phytochemistry, 16: 333.Google Scholar
  220. Wardale, D. A., Lambert, E. A., and Galliard, T., 1978, Localization of fatty acid hydroperoxide cleavage activity in membranes of cucumber fruit, Phytochemistry, 17: 205.Google Scholar
  221. Weber, F., and Grosch, W., 1976, Co-oxidation of a carotenoid by the enzyme lipoxygenase: Influence on the formation of linoleic acid hydroperoxides, Z. Lebensm. Unters.-Forsch., 161:223.Google Scholar
  222. Weber, F., Laskawy, G., and Grosch, W., 1973, Enzymatic carotene destruction in peas, soybeans, wheat, and flaxseed, Z. Lebensm. Unters.-Forsch., 152:324.Google Scholar
  223. Weber, F., Laskawy, G., and Grosch, W., 1974, Co-oxidation of carotene and crocin by soyabean lipoxygenase isoenzymes, Z. Lebensm. Unters.-Forsch., 155:142.Google Scholar
  224. Yabuuchi, S., 1978, Hexanal production from linoleic acid in germinating barley grains via a linoleate hydroperoxide isomerase. Studies of lipid metabolizing enzymes in barley grains. Part IV, J. Agric. Chem. Soc. Jpn., 52: 417.Google Scholar
  225. Yabuuchi, S., and Amaha, M., 1975, Partial purification and characterization of the lipoxygenase from grains of Hordeum distichum, Phytochemistry, 14:2569.Google Scholar
  226. Zimmerman, D. C., 1966, A new product of linoleic acid oxidation by a flaxseed enzyme, Biochem. Biophys. Res. Commun., 23:398.Google Scholar
  227. Zimmerman, D. C., and Feng, P., 1978, Characterization of a prostaglandin-like metabolite of linolenic acid produced by a flaxseed extract, Lipids, 13: 313.Google Scholar
  228. Zimmerman, D. C., and Vick, B. A., 1970a, Hydroperoxide isomerase. A new enzyme of lipid metabolism, Plant Physiol. 46: 445.Google Scholar
  229. Zimmerman, D. C., and Vick, B. A., 1970b, Specificity of flaxseed lipoxidase, Lipids, 5: 392.CrossRefGoogle Scholar
  230. Zimmerman, D. C., and Vick, B. A., 1973, Lipoxygenase in Chlorella pyrenoidosa, Lipids, 8:264.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • H. W. Gardner
    • 1
  1. 1.U.S. Department of AgricultureNorthern Regional Research Center, Agricultural Research Science and Education AdministrationPeoriaUSA

Personalised recommendations