Superoxide Radical and Superoxide Dismutases: Threat and Defense

  • Karen Brawn
  • Irwin Fridovich


An enzymic flux of O 2 and H2O2 caused strand breaks in the supercoiled covalently closed circular Col El plasmid. Subnanomolar levels of superoxide dismutase or of catalase prevented this attack on DNA, signifying that both O 2 and H2O2 were required. Benzoate, mannitol or histidine, which do not scavenge O 2 and H2O2, also protected the DNA, suggesting that the proximate attacking species had a reactivity comparable to that of the hydroxyl radical. Replacing EDTA with diethylene triamine pentaacetic acid eliminated this attack. In toto the data suggest a metal-catalyzed interaction between O 2 and H2O2 which generates a potent oxidant, possibly OH·, which can cause DNA strand scission. The biological implications of the production and the enzymic scavenging of the superoxide radical are discussed.


Superoxide Dismutase Superoxide Radical Xanthine Oxidase Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Czapski, Radiation chemistry of oxygenated aqueous solutions, Ann. Rev. Phys. Chem. 22:171 (1971).Google Scholar
  2. 2.
    H. P. Misra and I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247:3170 (1972).Google Scholar
  3. 3.
    D. B. Fisher and S. Kaufman, Tetrahydropterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase, J. Biol. Chem. 248:4300 (1973).Google Scholar
  4. 4.
    D. Ballou, G. Palmer, and V. Massey, Direct demonstration of superoxide anion production during the oxidation of reduced flavin and of its catalytic decomposition by erythrocuprein, Biochem. Biophys. Res. Commun. 36:898 (1969).Google Scholar
  5. 5.
    A. A. Al-Thannon, J. P. Barton, J. E. Packer, R. J. Sims, C. N. Trumbore, and R. V. Winchester, The radiolysis of aqueous solutions of cysteine in the presence of oxygen, Int. J. Rad. Phys. Chem. 6:233 (1974).Google Scholar
  6. 6.
    W. H. Orme-Johnson and H. Beinert, On the formation of the superoxide anion radical during the reaction of reduced iron-sulfur proteins with oxygen, Biochem. Biophys. Res. Commun. 36:905 (1969).Google Scholar
  7. 7.
    H. P. Misra and I. Fridovich, The generation of superoxide radical during the autoxidation of hemoglobin, J. Biol. Chem. 247:6960 (1972).Google Scholar
  8. 8.
    J. M. McCord and I. Fridovich, The reduction of cytochrome c by milk xanthine oxidase, J. Biol. Chem. 243:5753 (1968).Google Scholar
  9. 9.
    V. Massey, S. Strickland, S. G. Mayhew, L. G. Howell, P. C. Engel, R. G. Matthews, M. Schuman, and P. A. Sullivan, The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen, Biochem. Biophys. Res.Commun.36:891 (1969).Google Scholar
  10. 10.
    G. Loschen, A. Azzi, C. Richler, and L. Flohé, Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42: 68 (1974).Google Scholar
  11. 11.
    K. Asada and K. Kiso, Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts, Eur. J. Biochem. 33: 253 (1973).Google Scholar
  12. 12.
    B. M. Babior, Oxygen-dependent microbial killing by phagocytes (two parts), New Engl. J. Med. 298:659, 721 (1978).Google Scholar
  13. 13.
    B. H. J. Bielski and A. O. Allen, Mechanism of the disproportionation of superoxide radicals, J. Phys. Chem. 81:1048 (1977).Google Scholar
  14. 14.
    J. M. McCord and I. Fridovich, Superoxide dismutase - an enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem. 244:6049 (1969).Google Scholar
  15. 15.
    B. B. Keele, Jr., J. M. McCord, and I. Fridovich, Superoxide dismutase from Escherichia coli B; a new manganese-containing enzyme, J. Biol. Chem. 245:6176 (1970).Google Scholar
  16. 16.
    F. J. Yost, Jr. and I. Fridovich, An iron-containing superoxide dismutase from Escherichia coli, J. Biol. Chem. 248: 4905 (1973).Google Scholar
  17. 17.
    J. I. Harris and H. M. Steinman, Amino acid sequence homologies among superoxide dismutases, in “Superoxide and Superoxide Dismutases,” A. M. Michelson, J. M. McCord and I. Fridovich, eds., Academic Press, London (1977).Google Scholar
  18. 18.
    K. M. Beem, W. E. Rich, and K. V. Rajagopalan, Total reconstitution of copper-zinc superoxide dismutase, J. Biol. Chem. 249:7298 (1974).Google Scholar
  19. 19.
    F. Yamakura, A study on the reconstitution of iron-superoxide dismutase from Pseudomonas ovalis, J. Biochem. (Tokyo) 83: 849 (1978).Google Scholar
  20. 20.
    C. J. Brock, J. I. Harris, and S. Sato, Superoxide dismutase from Bacillus stearothermophilus. Preparation of stable apoprotein and reconstitution of fully active Mn enzyme, J. Mol. Biol. 107:175 (1976).Google Scholar
  21. 21.
    D. E. Ose and I. Fridovich, Manganese-containing superoxide dismutase from Escherichia coli: reversible resolution and metal replacements, Arch. Biochem. Biophys. 194:360 (1979).Google Scholar
  22. 22.
    A. M. Michelson, Biological aspects of superoxide dismutase, in: “Frontiers in Physicochemical Biology,” B. Pullman, ed., Academic Press, New York (1978).Google Scholar
  23. 23.
    I. Fridovich, The biology of oxygen radicals, Science 201: 875 (1978).Google Scholar
  24. 24.
    W. H. Koppenol, K. J. H. Van Buuren, J. Butler, and R. Braams, The kinetics of the reduction of cytochrome c by the superoxide anion radical, Biochim. Biophys. Acta 449: 157 (1976).CrossRefGoogle Scholar
  25. 25.
    P. M. May, P. W. Linder, and D. R. Williams, Computer simulation of metal-ion equilibrium biofluids. Models for the lowmolecular-weight complex distribution of calcium (II), magnesium (II), manganese(II), iron (III), copper (II), zinc (II), and lead (II) ions in human blood plasma, J. Chem. Soc. Dalton 588 (1977).Google Scholar
  26. 26.
    W. H. Koppenol, in: “Proc. 3rd International Symposium on Oxidases and Related Redox Systems,” H. S. Mason, M. Morrison, and T. E. King, eds., in press.Google Scholar
  27. 27.
    D. P. Malinowski and I. Fridovich, The role of arginine at the active site of the bovine erythrocyte superoxide dismutase, Biochemistry, in press.Google Scholar
  28. 28.
    I. Fridovich and H. M. Hassan, Paraquat and the exacerbation of oxygen toxicity, Trends in Biochem. Res. 4:113 (1979).Google Scholar
  29. 29.
    J. M. McCord., Free radicals and inflammation: protection of synovial fluid by superoxide dismutase, Science 185: 529 (1974).Google Scholar
  30. 30.
    R. A. Greenwald and W. W. Moy, Inhibition of collagen gelation by action of the superoxide radical, Arthritis Rheum. 22: 251 (1979).CrossRefGoogle Scholar
  31. 31.
    F. Lavelle, A. M. Michelson, and L. Dimitrijevic, Biological protection by superoxide dismutase, Biochem. Biophys. Res. Commun. 55: 350 (1973).Google Scholar
  32. 32.
    W. S. Lin, D. A. Armstrong, and M. Lal, Effects of superoxide dismutase, dithiothreitol and formate ion on the inactivation of papain by hydroxyl and superoxide radicals in aerated solutions, Int. J. Radiat. Biol. 33:231 (1978).Google Scholar
  33. 33.
    D. A. Armstrong and J. D. Buchanan, Reactions of 027, H202 and other oxidants with sulfhydryl enzymes, Photochem. Photobiol. 28:743 (1978).Google Scholar
  34. 34.
    E. W. Kellogg, III and I. Fridovich, Superoxide, hydrogen peroxide and singlet oxygen in lipid peroxide by a xanthine oxidase system, J. Biol. Chem. 250:8812 (1975).Google Scholar
  35. 35.
    J. M. C. Gutteridge, The protective action of superoxide dismutase on metal-ion catalysed peroxidation of phospholipids, Biochem. Biophys. Res. Commun. 77:379 (1977).Google Scholar
  36. 36.
    M. J. Thomas, K. S. Mehl, and W. A. Pryor, The role of superoxide anion in the xanthine oxidase-induced autoxidation of linoleic acid, Biochem. Biophys. Res. Commun. 83: 927 (1978).CrossRefGoogle Scholar
  37. 37.
    B. Goldberg and A. Stern, The role of the superoxide anion as a toxic species in the erythrocyte, Arch. Biochem. Biophys.178:218 (1977).Google Scholar
  38. 38.
    R. E. Lynch and I. Fridovich, Effects of superoxide on the erythrocyte membrane, J. Biol. Chem. 253:1838 (1978).Google Scholar
  39. 39.
    J. J. Van Hemmen and W. J. A. Meuling, Inactivation of biologically active DNA by y-ray-induced superoxide radicals and their dismutation products: singlet molecular oxygen and hydrogen peroxide, Biochim. Biophys. Acta 402:133 (1975).Google Scholar
  40. 40.
    R. Cone, S. K. Hasan, J. W. Lown, and A. R. Morgan, The mechanism of the degradation of DNA by streptonigrin, Can. J. Biochem. 54:219 (1976).Google Scholar
  41. 41.
    J. W. Lown and G. Weir, Studies related to antitumor antibiotics. Part XIV. Reactions of mitomycin B with DNA, Can. J. Biochem. 56, 296 (1978).Google Scholar
  42. 42.
    E. M. Gregory, F. J. Yost, Jr., and I. Fridovich, Superoxide dismutase of Escherichia coli: intracellular localization and functions, J. Bacteriol. 115:987 (1973).Google Scholar
  43. 43.
    B. M. Babior, J. T. Curnutte, and R. S. Kipnes, Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase, J. Lab. Clin. Med. 85:235 (1975).Google Scholar
  44. 44.
    A. M. Michelson and M. E. Buckingham, Effects of superoxide radicals on myoblast growth and differentiation, Biochem. Biophys. Res. Commun. 58:1079 (1974).Google Scholar
  45. 45.
    M. L. Salin and J. M. McCord, Free radicals in leukocyte metabolism and inflammation, in: “Superoxide and Superoxide Dismutases,” A. M. Michelson, J. M. McCord and I. Fridovich, eds., Academic Press, London (1977).Google Scholar
  46. 46.
    P. S. Hoffman, H. A. George, N. R. Krieg, and R. M. Smibert, Studies of the microaerophilis nature of Campylobacter fetus subsp. jejuni. II. Role of exogenous superoxide anions and hydrogen peroxide, Canad. J. Microbiol. 25:8 (1979).Google Scholar
  47. 47.
    H. Nohl, V. Breuninger, and O. Hegner, Influence of mitochondrial radical formation of energy-linked respiration, Eur. J. Biochem. 90:385 (1978).Google Scholar
  48. 48.
    B. H. J. Bielski and H. W. Richter, A study of the superoxide radical chemistry by stopped-flow radiolysis and radiation induced oxygen consumption, J. Amer. Chem. Soc. 99:3019 (1977).Google Scholar
  49. 49.
    J. M. McCord, “Proc. 2nd Int. Symp. Superoxide and Superoxide Dismutases,” J. Bannister, ed., Malta, in press.Google Scholar
  50. 50.
    S. Asami and T. Akazawa, Enzymic formation of glycolate in Chromatium. Role of superoxide radical in a transketolasetype mechanism, Biochemistry 16: 2202 (1977).Google Scholar
  51. 51.
    B. H. J. Bielski and P. C. Chan, Kinetic study by pulse radiolysis of the lactate dehydrogenase-catalyzed chain oxidation of nicotinamide adenine dinucleotide by H02 and 02-radicals, J. Biol. Chem. 250:318 (1975).Google Scholar
  52. 52.
    C. Beauchamp and I. Fridovich, A mechanism for the production of ethylene from methional: the generation of hydroxyl radical by xanthine oxidase, J. Biol. Chem. 245:4641 (1970).Google Scholar
  53. 53.
    F. Haber and J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. Roy. Soc. London A147:332 (1934).Google Scholar
  54. 54.
    G. Czapski and Y. A. Ilan, On the generation of the hydroxylation agents from superoxide radical-can the Haber Weiss reaction be the souce of OH. radicals? Photochem. Photobiol. 28:651 (1978).Google Scholar
  55. 55.
    J. M. McCord and D. E. Day, Jr., Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex, FEBS Lett. 86: 139 (1978).Google Scholar
  56. 56.
    A. R. Morgan, R. L. Cone, and T. M. Elgert, The mechanism of DNA strand breakage by vitamin C and the protective roles of catalase and superoxide dismutase. Nucleic Acids Res. 3: 1139 (1976).Google Scholar
  57. 57.
    J. W. Lown, A.Begleiter, D. Johnson, and A. R. Morgan, Studies related to antitumor antibiotics. Part V. Reactions of mitomycin c with DNA examined by ethidium fluorescence assay, Can. J. Biochem. 54:110 (1976).Google Scholar
  58. 58.
    J. W. Lown and S. K. Sim, The mechanism of the bleomycin-induced cleavage of DNA, Biochem. Biophys. Res. Commun. 77: 1150 (1977).Google Scholar
  59. 59.
    P. Modrich and D. Zabel, EcoRI endonuclease. Physical and catalytic properties of the homogeneous enzyme, J. Biol. Chem. 251:5866 (1976).Google Scholar
  60. 60.
    G. R. Buettner, L. W. Oberley, and S. W. H. G. Leuthauser, The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay, Photochem. Photobiol. 28:693(1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Karen Brawn
    • 1
  • Irwin Fridovich
    • 1
  1. 1.Department of BiochemistryDuke University Medical CenterDurhamUSA

Personalised recommendations