Advertisement

Initiation of the Autoxidation of Polyunsaturated Fatty Acids (PUFA) by Ozone and Nitrogen Dioxide

  • William A. Pryor
  • Donald G. Prier
  • John W. Lightsey
  • Daniel F. Church

Abstract

The oxidation of fats in food produces rancidity, spoilage, and toxic compounds and is a problem of enormous economic consequences to man.1 The polyunsaturated fatty acids (PUFA) are among the compounds in food that are the most sensitive to slow deterioration resulting from oxidation by air (autoxidation). Our group has been interested in the mechanism of the autoxidation of PUFA both for this reason and because attack on PUFA in living systems causes membrane damage and cellular death.2–6 One of the most intriguing problems in this area is the source of the primordial radicals-- that is, the original radicals that initiate the autoxidation chains. We suggest that for many systems this initiation is caused by ubiquitous environmental pollutants, many of which are known to be able to generate radicals in organic materials.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Methyl Linoleate Hydrogen Abstraction Nitrogen Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Schultz, E. A. Day, and R. O. Sinnhuber, “Symposium on Foods: Lipids and Their Oxidation,” Ari Publishing Co., Westport, Conn. (1962).Google Scholar
  2. 2.
    W. A. Pryor, J. P. Stanley, E. Blair, and G. B. Cullen, Autoxidation of PUFA. I. Effect of Ozone on the Autoxidation of Neat Methyl Linoleate and Linolenate, Arch. Environ. Health 31: 201 (1976).CrossRefGoogle Scholar
  3. 3.
    W. A. Pryor, The Role of Free Radical Reactions in Biological Systems, in:“Free Radicals in Biology,” Volume I, W. A. Pryor, ed., Academic Press, New York (1976).Google Scholar
  4. 4.
    W. A. Pryor, Methods of Detecting Free Radicals and Free Radical-Mediated Pathology in Environmental Toxicity, in: “Molecular Basis of Environmental Toxicity,” R. S. Bhatnagar, ed., Ann Arbor Science Publishers, Ann Arbor (1980).Google Scholar
  5. 5.
    W. A. Pryor, Mechanisms and Detection of Pathology Caused by Free Radicals. Tobacco Smoke, Nitrogen Dioxide, and Ozone, in:“Environmental Health Chemistry,” J. D. McKinney, ed., Ann Arbor Science Publishers, Ann Arbor (1980).Google Scholar
  6. 6.
    W. A. Pryor, The Involvement of Free Radical Reactions in Aging and Carcinogenisis, in:“Medicinal Chemistry,” Volume V, J. Mathieu, ed., Elsevier, Amsterdam (1977).Google Scholar
  7. 7.
    B. D. Goldstein, C. Lodi, C. Collinson, and O. J. Balchum, Ozone and Lipid Peroxidation, Arch. Environ. Health 18: 631 (1969).CrossRefGoogle Scholar
  8. 8.
    E. E. Dumelin, C. J. Dillard, and L. L. Tappel, Effect of Vitamin E and Ozone on Pentane and Ethane Expired by Rats, Arch. Environ. Health 33: 129 (1978).CrossRefGoogle Scholar
  9. 9.
    A. L. Tappel, Measurement of In Vivo Lipid Peroxidation, in:“Free Radicals in Biology,” Volume IV, W. A. Pryor, ed., Academic Press, New York (in press).Google Scholar
  10. 10.
    B. D. Goldstein, Hydrogen Peroxide in Erythrocytes. Detection in Rats and Mice Inhaling Ozone, Arch. Environ. Health 26: 279 (1973).CrossRefGoogle Scholar
  11. 11.
    D. B. Menzel, The Role of Free Radicals in the Toxicity of Air Pollutants (Nitrogen Oxides and Ozone), in:“Free Radicals in Biology,” Volume II, W. A. Pryor, ed., Academic Press, New York (1976).Google Scholar
  12. 12.
    W. A. Pryor, “Free Radicals,” McGraw-Hill Book Co., New York (1966).Google Scholar
  13. 13.
    J. F. Mead, Free Radical Mechanisms of Lipid Damage and Consequences for Cellular Membranes, in:“Free Radicals in Biology,” Volume I, W. A. Pryor, ed., Academic Press, New York (1976).Google Scholar
  14. 14.
    B. D. Goldstein, R. D. Buckley, R. Cardenas, and O. J. Balchum, Ozone and Vitamin E, Science 169: 605 (1970).CrossRefGoogle Scholar
  15. 15.
    J. N. Roehm, J. C. Hadley, and D. B. Menzel, Antioxidants vs. Lung Disease, Arch. Intern. Med. 128: 88 (1970).CrossRefGoogle Scholar
  16. 16.
    J. N. Roehm, J. C. Hadley, and D. B. Menzel, The Influence of Vitamin E on the Lung Fatty Acids of Rats Exposed to Ozone, Arch. Environ. Health 24: 237 (1972).CrossRefGoogle Scholar
  17. 17.
    C. K. Chow and A. L. Tappel, An Enzymatic Protective Mechanism Against Lipid Peroxidation Damage to Lungs of Ozone Exposed Rats, Lipids 7: 518 (1972).CrossRefGoogle Scholar
  18. 18.
    J. N. Roehm, J. C. Hadley, and D. B. Menzel, Oxidation of Unsaturated Fatty Acids by Ozone and Nitrogen Dioxide: A Common Mechanism of Action, Arch. Environ. Health 23: 142 (1971).CrossRefGoogle Scholar
  19. 19.
    D. C. Borg, Applications of ESR in Biology, in:“Free Radicals in Biology,” Volume I, W. A. Pryor, ed., Academic Press, New York (1976).Google Scholar
  20. 20.
    H. M. Swartz, J. R. Bolton, and D. C. Borg, “Biological Applications of Electron Spin Resonance,” John Wiley and Sons, New York (1972).Google Scholar
  21. 21.
    B. D. Goldstein, O. J. Balchum, H. B. Demopoulos, and P. S. Duke, Electron Paramagnetic Resonance Spectroscopy: Free Radical Signals Associated with Ozonation of Linoleic Acid, Arch. Environ. Health 17: 46 (1968).CrossRefGoogle Scholar
  22. 22.
    W. A. Pryor and M. E. Kurz, Radical Production from the Interaction of Closed-Shell Molecules. VIII. The Mechanism of the Reaction of Ozone with tent-Butyl Hydroperoxide; 1,3-Dipolar Insertion, Electron Transfer, or Molecule Assisted Homolysis, Tetrahedron Letters 698 (1978).Google Scholar
  23. 23.
    W. A. Pryor and M. E. Kurz, Radical Production from the Interaction of Closed-Shell Molecules. IX. Reaction of Ozone with tert-Butyl Hydroperoxide, J. Amer. Chem. Soc. 100: 7953 (1978).CrossRefGoogle Scholar
  24. 24.
    W. A. Pryor, Radical Production from the Interaction of Closed-Shell Molecules, in:Organic Free Radicals,“ W. A. Pryor, ed., American Chemical Society, Washington, D. C. (1978).Google Scholar
  25. 25.
    W. A. Pryor, D. G. Prier, and D. F. Church, Radical Production from the Interaction of Ozone and PUFA as Demonstrated by Electron Spin Trapping Techniques, submitted for publication.Google Scholar
  26. 26.
    J. A. Howard, Absolute Rate Constants for Reactions of Oxyl Radicals, Adv. Chem. Series, No. 4 (1972).Google Scholar
  27. 27.
    T. J. Kemp and M. J. Welbourn, Preparation of Specific Primary and Secondary Alkylperoxy Radicals in Solution for ESR Investigation, Tetrahedron Letters 1: 87 (1974).CrossRefGoogle Scholar
  28. 28.
    J. E. Bennett and R. Summers, Electron Spin Resonance of Secondary Alkylperoxy Radicals, J. Chem. Soc., Faraday Trans. II 69: 1043 (1973).CrossRefGoogle Scholar
  29. 29.
    J. A. Howard and K. U. Ingold, Absolute Rate Constants for Hydrocarbon Autoxidation. VI. Alkyl Aromatic and Olefinic Hydrocarbons, Can. J. Chem. 45: 793 (1967).CrossRefGoogle Scholar
  30. 30.
    P. J. Kochi and J. K. Kochi, Electron Spin Resonance of Aliphatic Hydrocarbon Radicals in Solution, J. Amer. Chem. Soc. 90: 7155 (1968).CrossRefGoogle Scholar
  31. 31.
    E. G. Janzen, Spin Trapping, Acct. Chem. Res. 4: 31 (1971).CrossRefGoogle Scholar
  32. 32.
    E. G. Janzen, A Critical Look at Spin Trapping in Biological Systems and the Use of Spin Traps, in:“Free Radicals in Biology,” Volume IV, W. A. Pryor, ed., Academic Press, New York (in press).Google Scholar
  33. 33.
    P. D. Bartlett, and M. Lehav, Crystalline Di-tert-Butyl Trioxide and Di-cumyl Trioxide, Israel J. Chem. 10:101 (1972).Google Scholar
  34. 34.
    P. D. Bartlett and G. Guaraldi, Di-t-Butyl Trioxide and Di-tButyl Tetroxide, J. Amer. Chem. Soc. 89: 4799 (1967).CrossRefGoogle Scholar
  35. 35.
    S. W. Benson, “Thermochemical Kinetics,” John Wiley and Sons, New York (1976).Google Scholar
  36. 36.
    J. F. Brown, The Reaction of Nitric Oxide with Isobutylene, J. Amer. Chem. Soc. 79: 2480 (1957).CrossRefGoogle Scholar
  37. 37.
    H. Baldock, N. Levy, and C. W. Scaife, Addition of Dinitrogen Tetroxide to Olefins. Part V. Cyclohexene and the Octenes, J. Chem. Soc. 2627 (1949).Google Scholar
  38. 38.
    J. C. D. Brand and I. D. R. Stevens, Mechanism and Stereo-chemistry of the Addition of Nitrogen Dioxide to Olefins, J. Chem. Soc. 629 (1958).Google Scholar
  39. 39.
    H. Schecter, The Chemistry and Mechanisms of Reactions of Oxides of Nitrogen and Olefins, Rec. Chem. Prog. 25: 55 (1964).Google Scholar
  40. 40.
    A. I. Titov, The Free Radical Mechanism of Nitration, Tetrahedron 19: 557 (1963).CrossRefGoogle Scholar
  41. 41.
    A. V. Topchiev, “Nitration of Hydrocarbons,” Pergamon Press, New York (1959).Google Scholar
  42. 42.
    G. A. Bonetti, C. B. DeSavigny, C. Michalski, and R. Rosenthal, The Nitration of Alpha-Olefins with Nitrogen Dioxide and Dinitrogen Tetroxide in Non-Complexing Solvents, Amer. Chem. Soc., Div. Petrol. Chem., Preprints 10: 135 (1965).Google Scholar
  43. 43.
    H. V. Thomas, P. K. Mueller, and R. L. Lyman, Lipoperoxidation of Lung Lipids in Rats Exposed to Nitrogen Dioxide, Science 159: 532 (1968).CrossRefGoogle Scholar
  44. 44.
    G. Sosnovsky, “Free Radical Reactions in Preparative Organic Chemistry,” The MacMillan Co., New York (1964).Google Scholar
  45. 45.
    N. A. Khan, Mechanism of the Conversion of Cis-to Trans-Modifications of the Unsaturated Higher Fatty Acid Esters by Nitrogen Dioxide, J. Chem. Phys. 23: 2447 (1955).CrossRefGoogle Scholar
  46. 46.
    T. F. Redmond and B. B. Wayland, Dimerization of Nitrogen Dioxide in Solution: a Comparison of Solution Thermodynamics with the Gas Phase, J. Chem. Phys. 72: 1626 (1968).CrossRefGoogle Scholar
  47. 47.
    T. Carrington and N. Davidson, Shock Waves In Chemical Kinetics: The Rate of Dissociation of N204, J. Chem. Phys. 57: 418 (1953).CrossRefGoogle Scholar
  48. 48.
    J. A. Howard and K. U. Ingold, Absolute Rate Constants for Hydrocarbon Autoxidation IV. Tetralin, Cyclohexene, Diphenylmethane, Ethylbenzene, and Allylbenzene, Can. J. Chem. 44: 1119 (1966).CrossRefGoogle Scholar
  49. 49.
    P. G. Ashmore and B. H. Tyler, The Formation and Thermodynamic Properties of Nitrous Acid Vapour, J. Chem. Soc. 1017 (1961).Google Scholar
  50. 50.
    P. L. Asquith and B. J. Tyler, The Stability of Gaseous Nitrous Acid, Chem. Comm. 744 (1970).Google Scholar
  51. 51.
    D. E. Van Sickle, F. R. Mayo, and R. M. Arluck, Liquid-phase Oxidations of Cyclic Alkenes, J. Amer. Chem. Soc. 87: 4824 (1965).CrossRefGoogle Scholar
  52. 52.
    K. U. Ingold, Peroxy Radicals, Acct. Chem. Res. 2: 1 (1969).CrossRefGoogle Scholar
  53. 53.
    J. L. Sprung, H. Akimoto, and J. N. Pitts, Jr., Nitrogen Dioxide Catalyzed Geometric Isomerization of Olefins. Isomerization Kinetics of the 2-Butenes and the 2-Pentenes, J. Amer. Chem. Soc. 96: 6549 (1974).CrossRefGoogle Scholar
  54. 54.
    E. S. Thomsen and J. Chr. Gjaldbaek, The Solubility of Hydrogen, Nitrogen, Oxygen, and Ethane in Normal Hydrocarbons, Acta Chem. Scand. 17: 127 (1963).CrossRefGoogle Scholar
  55. 55.
    J. O. Osburn and P. L. Markovic, Calculating Henry’s Law Constant for Gases in Organic Liquids, Chem. Eng. (N.Y.) 76: 105 (1969).Google Scholar
  56. 56.
    W. A. Pryor and J. W. Lightsey, Manuscript in Preparation.Google Scholar
  57. 57.
    T. A. Turney and G. A. Wright, Nitrous Acid and Nitrosation, Chem. Rev. 59: 497 (1959).CrossRefGoogle Scholar
  58. 58.
    S. S. Mirvish, K. Karlowski, J. P. Sams, and S. D. Arnold, Studies Related to Nitrosamide Formation: Nitrosation in Solvent:Water and Solvent Systems, Nitrosomethylurea Formation in the Rat Stomach, and Analysis of a Fish Product for Ureas, in:“Environmental Aspects of N-Nitroso Compounds,” E. A. Walker, L. Gricuite, M. Castegnaro, and R. E. Lyle, eds., International Agency for Research on Cancer (IARC Scientific Publication No. 19), Lyon (1978).Google Scholar
  59. 59.
    S. S. Epstein, Z. M. Iqbal, and M. D. Johnson, In Vivo Nitrosation of Morpholine in Mice by Inhaled NO2, Presented at 6th meeting on N-Nitroso compounds. Sponsored by the International Agency for Research on Cancer, in Budapest, Hungary, October 16–19, 1979. (In Press, IARC, Lyon).Google Scholar
  60. 60.
    B. C. Callis and S. A. Kyrtopoulos, Rapid Formation of Carcinogenic Nitrosamines in Aqueous Alkaline Solution, Br. J. Cancer 35: 693 (1977).CrossRefGoogle Scholar
  61. 61.
    B. C. Callis, A. Edwards, R. R. Hunma, S. A. Kyrtopoulos, and J. R. Outram, Rapid formation of N-Nitrosamines from Nitrogen Oxides under Neutral and Alkaline Conditions, in: “Environmental Aspects of N-Nitroso Compounds,” E. A. Walker, L. Gricuite, M. Castegnaro, and R. E. Lyle, eds., International Agency for Research on Cancer (IARC Scientific Publication No. 19), Lyon (1978).Google Scholar
  62. 62.
    P. S. Bailey, “Ozonations in Organic Chemistry,” Volume I, Academic Press, New York (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • William A. Pryor
    • 1
  • Donald G. Prier
    • 1
  • John W. Lightsey
    • 1
  • Daniel F. Church
    • 1
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA

Personalised recommendations