Advertisement

Atomic Processes in High-Intensity, High-Frequency Laser Fields

  • M. Gavrila
Part of the Nato ASI Series book series (NSSB, volume 143)

Abstract

A nonperturbative theory is described for electron-atom interactions in intense, high-frequency laser fields. It is illustrated on the case of free-free transitions of electrons colliding with a potential, and on the multiphoton ionization of one-electron atoms. Transition amplitudes are obtained, and their validity is discussed. The theory applies at already existing excimer laser frequencies (and intensities), but extends beyond, into the, XUV range. It is shown that in this regime collisions are dominated by the clastic channel, and that the atom, although possibly strongly distorted, has a small decay rate. Numerical results are presented for the laser-modified elastic scattering from a Coulomb potential.

Keywords

Elastic Scattering Excimer Laser Laser Field Schrodinger Equation Multiphoton Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gavrila, in Atomic Physics 9, Eds. N. Fortson and R. van Dyck (World. Scientific Publishing Co, 1985) p. 523.Google Scholar
  2. 2.
    N.M. Kroll and K.M. Watson, Phys.Rev. A 8, 804 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    M. Gavrila and J.Z. Kaminski, Phys.Rev.Lett. 52, 613 (1984) and to be published.ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Offerhaus, J.Z. Kaminski and M. Gavrila, Phys. Lett. 112A, 151(1985).ADSGoogle Scholar
  5. 5.
    T.S. Luk, H. Pummer, K. Boyer, M. Shahidi, H. Egger and C.K. Rhodes, Phys. Rev.Lett. 51, 110 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    K. Boyer, H. Egger, T.S. Luk, H. Pummer and C.K. Rhodes, J.Opt.Soc.Am. B 1, 3 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    H.G. Muller and A. Tip, Phys.Rev. A 30, 3039 (1984), and unpublished.Google Scholar
  8. 8.
    H. Krüger and Ch. Jung, Phys.Rev. A 17, 1706 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    H.A. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956), p. 866Google Scholar
  10. 10.
    W.C. Henneberger, Phys.Rev.Lett. 11, 838 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    Chan K. Choi, W. Henneberger and F.C. Sanders, Phys.Rev. A 9, 1895 (1974).ADSCrossRefGoogle Scholar
  12. 12.
    J.I. Gersten and M.H. Mittleman, J.Phys. B 9, 2561 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    M. Pont and M. Gavrila, to be published.Google Scholar
  14. 14.
    J. van de Ree, J. Kaminski and M. Gavrila, to be published.Google Scholar
  15. 15.
    L.R. Elton, Nuclear Sizes (Oxford University Press, 1961).Google Scholar
  16. 16.
    R. Evans, The Atomic Nucleus (McGraw-Hill, 1955).Google Scholar
  17. 17.
    A.I. Baz, Ya.B. Zeldovich and A.M. Perelomov, Scattering, Reactions and Decay in Non-relativistic Quantum Mechanics (translated from the Russian by the Israel Program for Scientific Translations, Jerusalem 1969), Chap. 5.Google Scholar
  18. 18.
    Ya.B. Zeldovich, Sov.Phys.Usp. 16, 427 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    M.H. Mittleman, Introduction to the Theory of Laser-Atom Interactions (Plenum, 1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • M. Gavrila
    • 1
  1. 1.FOM-Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands

Personalised recommendations