Molecules in Intense Laser Fields

  • S. N. Dixit
  • V. McKoy
Part of the NATO ASI Series book series (NSSB, volume 212)


Recent advances in tunable laser sources have stimulated a great deal of interest in the study of intense field-matter interaction physics. Whenever a molecule interacts with an intense radiation field, it can absorb multiple photons from the field and make a transition either to an excited state (excitation) or into the continuum (ionization). If the energy of an integral number of photons equals the energy difference between the initial and an excited state, the multiphoton process becomes resonant and its probability is greatly enhanced. The observation of such resonant enhanced processes requires considerably less intensity than that required for non-resonant processes. Several researchers have taken advantage of this resonance enhancement to study various aspects of resonant enhanced multiphoton ionization (REMPI) processes in molecules.1 Measurement of ionic and photoelectron spectra have illustrated features such as non-Franck-Condon effects in ionic vibrational branching ratios due to autoionization,2 shape resonances3 and Cooper minima,4 non-atomic effects in ionization of Rydberg states5 and competition between rotational and vibrational autoionization.6


Excited State Photoelectron Spectrum Lawrence Livermore National Laboratory Multiphoton Ionization Rydberg Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example K. Kimura, Adv. Chem. Phys. 60 161 (1985).CrossRefGoogle Scholar
  2. R. N. Compton and J. C. Miller, in Laser Appl. in Phys. Chem., ed. D. K. Evans (Dekker, NY 1988).Google Scholar
  3. 2.
    S. T. Pratt, P. M. Dehmer and J. L. Dehmer, Chem. Phys. Lett. 105 28 (1984).ADSCrossRefGoogle Scholar
  4. S. T. Pratt et al, J. Chem. Phys. 85 3379 (1986).MathSciNetADSCrossRefGoogle Scholar
  5. M. A. O’Halloran et al, J. Chem. Phys. 87 3288 (1987).ADSCrossRefGoogle Scholar
  6. E. Y. Xu et al., Phys. Rev. A 36 5645 (1987).ADSCrossRefGoogle Scholar
  7. 3.
    P. J. Miller et al., J. Chem. Phys. 89 3921 (1988).ADSCrossRefGoogle Scholar
  8. J. A. Stephens et al., J. Chem. Phys. 89 3923 (1988).ADSCrossRefGoogle Scholar
  9. M. Braunstein et al., J. Chem Phys. 90 633 (1989).ADSCrossRefGoogle Scholar
  10. 4.
    J. A. Stephens and V. McKoy Phys. Rev. Lett. 62 889 (1989).ADSCrossRefGoogle Scholar
  11. 5.
    S. N. Dixit, et al., Phys Rev A 32 1267 (1985).ADSCrossRefGoogle Scholar
  12. 6.
    S. T. Pratt et al., to be published.Google Scholar
  13. 7.
    S. N. Dixit et al., Phys. Rev. A, to be published.Google Scholar
  14. 8.
    See, for example C. Cornaggia et al, J. Chem. Phys. 87 3934 (1987).ADSCrossRefGoogle Scholar
  15. S. Fredin et al., Mol. Phys. 60 825 (1987), and related references.ADSCrossRefGoogle Scholar
  16. 9.
    See, for example E. Y. Xu et al., Phys. Rev. A 39 3979 (1989) and references therein.ADSCrossRefGoogle Scholar
  17. 10.
    K. Codling et al, J. Phys. B 20 L5254 (1987).CrossRefGoogle Scholar
  18. 11.
    L. J. Frasinski et al., Phys. Rev. Lett. 58 2424 (1987).ADSCrossRefGoogle Scholar
  19. 12.
    T. S. Luk and C. K. Rhodes, Phys. Rev. A 38 6180 (1988).ADSCrossRefGoogle Scholar
  20. 13.
    P. Bucksbaum, private communication.Google Scholar
  21. 14.
    K. Codling et al., J. Phys B 21 L433 (1988).ADSCrossRefGoogle Scholar
  22. 15.
    D. C. Humm et al., to be published.Google Scholar
  23. 16.
    K. P. Huber and G. Herzberg, “Constants of Diatomic Molecules,” (Van Nostrand Reinhold, New York, 1979).Google Scholar
  24. 17.
    T. E. Sharp, At. Data 2 119 (1971).ADSCrossRefGoogle Scholar
  25. 18.
    S. L. Guberman J. Chem. Phys. 78 1404 (1983).ADSCrossRefGoogle Scholar
  26. 19.
    P. Lambropoulos, Phys. Rev. Lett. 55 2141 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • S. N. Dixit
    • 1
  • V. McKoy
    • 2
  1. 1.Theoretical Atomic and Molecular Physics GroupLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations